
Pipelines and workflowsPipelines and workflows
Abhijit DasguptaAbhijit Dasgupta

BIOF 339BIOF 339

BIOF 339: Practical RBIOF 339: Practical R

Pipes in the tidyversePipes in the tidyverse

22

The pipe operator %>% from the magrittr package The + symbol used as a pipe-like operator in ggplot2

ggplot(penguins,
 aes(x = bill_length_mm,
 y = body_mass_g))+
 geom_point(aes(color = species, shape = island))

BIOF 339: Practical R

Pipes
We've seen two types of pipes in R.

library(tidyverse) # includes magrittr
library(palmerpenguins)

penguins %>%
 group_by(species) %>%
 mutate(across(bill_length_mm:body_mass_g,
 function(x) replace_na(x, mean(x, na
 ungroup() %>%
 summarise(across(bill_length_mm:body_mass_g, media

3

The ggplot pipe has to be at the end of the workflow.
Also note, we're not adding the data argument to
ggplot since it is tidyverse-compatible and slots the end
of the previous pipe into the data argument

BIOF 339: Practical R

Pipes
You can combine the two pipes into a workflow to create a visualization

 y = body_mass_g)) +

penguins %>%
 group_by(species) %>%
 mutate(across(bill_length_mm:body_mass_g,
 function(x) replace_na(x, mean(x, na
 ungroup() %>%
 ggplot(aes(x = bill_length_mm,

 geom_point(aes(shape = island,
 color = species))+
 labs(x = 'Bill length(mm)',
 y = 'Body mass (g)') +
 hrbrthemes::theme_ipsum()

4

mpg %>%
 select(manufacturer, year, cty, hwy) %>%
 rowwise() %>%
 mutate(avg_mpg = mean(c(hwy, cty)))

A tibble: 234 × 5
Rowwise:
 manufacturer year cty hwy avg_mpg
 <chr> <int> <int> <int> <dbl>
 1 audi 1999 18 29 23.5
 2 audi 1999 21 29 25
 3 audi 2008 20 31 25.5
 4 audi 2008 21 30 25.5
 5 audi 1999 16 26 21
 6 audi 1999 18 26 22
 7 audi 2008 18 27 22.5
 8 audi 1999 18 26 22
 9 audi 1999 16 25 20.5
10 audi 2008 20 28 24
… with 224 more rows

The rowwise function creates groups, one per row, and
allows operations to occur along rows and across
columns.

What would the result be if you omitted the
rowwise function in the pipe?

BIOF 339: Practical R

Rowwise operations
The dplyr package allows you to do rowwise operations much more easily than before within a pipe using
the rowwise
function. For example

5

 ungroup() %>%

BIOF 339: Practical R

Rowwise operations
If you want to continue the pipe to incorporate the more traditonal column-wise operations, you need to use ungroup
before proceeding

mpg %>%
 select(manufacturer, year, cty, hwy) %>%
 rowwise() %>%
 mutate(avg_mpg = mean(c(hwy, cty))) %>%

 ggplot(aes(x = avg_mpg)) +
 geom_histogram(bins = 50)+
 ggthemes::theme_few()

6

 mutate(vol = prod(c_across(x:z))) %>%

BIOF 339: Practical R

Rowwise operations
There are some nice shortcuts, in line with the select function, even with rowwise operations

diamonds %>%
 select(carat, x:z) %>%
 rowwise() %>%

 ungroup() %>%
 ggplot(aes(x = vol,
 y = carat))+
 geom_point() +
 ggthemes::theme_fivethirtyeight()

Much more details about the possibilities of the rowwise function are available here

7

https://dplyr.tidyverse.org/articles/rowwise.html

BIOF 339: Practical RBIOF 339: Practical R

Prepping data for modelingPrepping data for modeling

88

BIOF 339: Practical R

Recipes

The idea of the recipes package is to define a recipe or
blueprint that can be used to sequentially define the
encodings and preprocessing of the data (i.e. “feature
engineering”)

This is done in the context of supervised modeling, e.g. regression, decision trees

The idea is to define the dependent and independent variables, and then creating a pipeline to modify the independent
variables through various statistical procedures.

9

BIOF 339: Practical R

Recipes
We'll start with the credit data in the modeldata package

library(recipes)
library(modeldata)
data("credit_data")

glimpse(credit_data)

Rows: 4,454
Columns: 14
$ Status <fct> good, good, bad, good, good, good, good, good, good, bad, go…
$ Seniority <int> 9, 17, 10, 0, 0, 1, 29, 9, 0, 0, 6, 7, 8, 19, 0, 0, 15, 33, …
$ Home <fct> rent, rent, owner, rent, rent, owner, owner, parents, owner,…
$ Time <int> 60, 60, 36, 60, 36, 60, 60, 12, 60, 48, 48, 36, 60, 36, 18, …
$ Age <int> 30, 58, 46, 24, 26, 36, 44, 27, 32, 41, 34, 29, 30, 37, 21, …
$ Marital <fct> married, widow, married, single, single, married, married, s…
$ Records <fct> no, no, yes, no, no, no, no, no, no, no, no, no, no, no, yes…
$ Job <fct> freelance, fixed, freelance, fixed, fixed, fixed, fixed, fix…
$ Expenses <int> 73, 48, 90, 63, 46, 75, 75, 35, 90, 90, 60, 60, 75, 75, 35, …
$ Income <int> 129, 131, 200, 182, 107, 214, 125, 80, 107, 80, 125, 121, 19…
$ Assets <int> 0, 0, 3000, 2500, 0, 3500, 10000, 0, 15000, 0, 4000, 3000, 5…
$ Debt <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2500, 260, 0, 0, 0, 2000…
$ Amount <int> 800, 1000, 2000, 900, 310, 650, 1600, 200, 1200, 1200, 1150,…
$ Price <int> 846, 1658, 2985, 1325, 910, 1645, 1800, 1093, 1957, 1468, 15…

10

rec

Data Recipe

Inputs:

 role #variables
 outcome 1
 predictor 4

summary(rec, original=TRUE)

A tibble: 5 × 4
 variable type role source
 <chr> <chr> <chr> <chr>
1 Seniority numeric predictor original
2 Time numeric predictor original
3 Age numeric predictor original
4 Records nominal predictor original
5 Status nominal outcome original

BIOF 339: Practical R

Recipes
Create an initial recipe based on the model that will be fit

rec <- recipe(Status ~ Seniority + Time + Age + Records, data = credit_data)

11

Add a step to convert nominal variables into dummies

(dummied <- rec %>% step_dummy(Records))

Data Recipe

Inputs:

 role #variables
 outcome 1
 predictor 4

Operations:

Dummy variables from Records

Then apply it to your data

dummied <- prep(dummied, training = credit_data)
with_dummy <- bake(dummied, new_data = credit_data)
head(with_dummy)

A tibble: 6 × 5
 Seniority Time Age Status Records_yes
 <int> <int> <int> <fct> <dbl>
1 9 60 30 good 0
2 17 60 58 good 0
3 10 36 46 bad 1
4 0 60 24 good 0
5 0 36 26 good 0
6 1 60 36 good 0

BIOF 339: Practical R

Recipes

12

BIOF 339: Practical R

Recipes
The recipes package provides a rich variety of data steps that can be used to prepare a data set.

iris_recipe <- iris %>%
 recipe(Species ~ .) %>%
 step_corr(all_predictors()) %>%
 step_center(all_predictors(), -all_outcomes()) %>%
 step_scale(all_predictors() , -all_outcomes()) %>%
 prep()
iris_recipe

Data Recipe

Inputs:

 role #variables
 outcome 1
 predictor 4

Training data contained 150 data points and no missing data.

Operations:

Correlation filter removed Petal.Length [trained]
Centering for Sepal.Length, Sepal.Width, Petal.Width [trained]
Scaling for Sepal.Length, Sepal.Width, Petal.Width [trained]

13

BIOF 339: Practical R

Recipes
This recipe can then be applied to the same or a different dataset

iris1 <- bake(iris_recipe, iris)
glimpse(iris1)

Rows: 150
Columns: 4
$ Sepal.Length <dbl> -0.89767388, -1.13920048, -1.38072709, -1.50149039, -1.01…
$ Sepal.Width <dbl> 1.01560199, -0.13153881, 0.32731751, 0.09788935, 1.245030…
$ Petal.Width <dbl> -1.3110521, -1.3110521, -1.3110521, -1.3110521, -1.311052…
$ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s…

You can go into more details at tidymodels.org, with a nice introduction here

14

https://www.tidymodels.org/
https://rviews.rstudio.com/2019/06/19/a-gentle-intro-to-tidymodels/

BIOF 339: Practical RBIOF 339: Practical R

WorkflowsWorkflows

1515

BIOF 339: Practical R

Workflows

16

BIOF 339: Practical R

Workflows

17

BIOF 339: Practical R

Workflows

18

BIOF 339: Practical R

Workflows
Create one script file for each node in your workflow
Save intermediate data or objects using saveRDS so that

they can be imported quickly by the next step
Each link in the chain can be checked and verified

You can summarize your entire workflow within one script:

source('01-ingest.R')
source('02-munge.R')
source('03-exploreviz.R')
source('04-eda.R')
source('05-models.R')
source('06-results.R')

19

BIOF 339: Practical R

Workflows
A personal story

I wrote a paper using R Markdown with a reasonable pipeline for data analyses, modeling and visualization

Output to Word for submission to a journal

Three months later, reviews came in asking for using updated data

Changed the data at the beginning of my workflow, ran the workflow, and had revised manuscript in 10 minutes.

Quickest turnaround ever!!

20

BIOF 339: Practical R

Workflows
Some ideas (Efficient Programming by Gillespie and Lovelace)

1. Start without writing code but with a clear mind and perhaps a pen and paper. This will ensure you keep your
objectives at the forefront of your mind, without getting lost in the technology.

2. Make a plan. The size and nature will depend on the project but timelines, resources and ‘chunking’ the work will
make you more effective when you start.

3. Select the packages you will use for implementing the plan early. Minutes spent researching and selecting from the
available options could save hours in the future.

4. Document your work at every stage; work can only be effective if it’s communicated clearly and code can only be
efficiently understood if it’s commented.

5. Make your entire workflow as reproducible as possible. knitr can help with this in the phase of documentation.

21

https://csgillespie.github.io/efficientR/workflow.html

