Data validation and exploration Abhijit Dasgupta BIOF 339

Plan today

- Dynamic exploration of data
- Data validation
- Missing data evaluation

BIOF 339: Practical R

Why go back to this?

This is important!!

- Most of the time in an analysis is spent understanding and cleaning data
- Recognize that unless you've ended up with good-quality data, the rest of the analyses are moot
- This is tedious, careful, non-sexy work
 - Hard to tell your boss you're still fixing the data
 - No real results yet
 - But essential to understanding the appropriate analyses and the tweaks you may need.

What does a dataset look like?

library(tidyverse)
library(visdat)
beaches <- rio::import('../data/sydneybeaches3.csv')
vis_dat(beaches)</pre>

What does a dataset look like?

brca <- rio::import('../data/clinical_data_breast_ca
vis_dat(brca)</pre>

What does a dataset look like?

vis_dat(airquality)

These plots give a nice insight into

- 1. data types
- 2. Missing data patterns (more on this later)

BIOF 339: Practical R

Let's get a bit more quantitative

summary and str/glimpse are a first pass

summary(airquality)

Ozone	Solar.R	Wind
Min. : 1.00	Min. : 7.0	Min. : 1.700
1st Qu .: 18.00	1st Qu .:115.8	1st Qu.: 7.400
Median : 31.50	Median :205.0	Median : 9.700
Mean : 42.13	Mean :185.9	Mean : 9.958
3rd Qu.: 63.25	3rd Qu .:258.8	3rd Qu .:11.500
Max. :168.00	Max. :334.0	Max. :20.700
NA's :37	NA's :7	
Month	Day	
Min. :5.000	Min. : 1.0	
1st Qu .:6.000	1st Qu.: 8.0	
Median :7.000	Median :16.0	
Mean :6.993	Mean :15.8	
3rd Qu .:8.000	3rd Qu.:23.0	
Max. :9.000	Max. :31.0	

glimpse(airquality)

Ro Co	ows: <mark>153</mark> olumns: 6	5									
\$	Ozone	<int></int>	41,	36,	12,	18,	NA,	28,	23,	19,	8, I
\$	Solar.R	<int></int>	190,	118	3, 1,	49,	313,	NA,	NA,	299	, 99
\$	Wind	<dbl></dbl>	7.4,	8.0	9, 12	2.6,	11.	5, 14	4.3,	14.9	9, 8
\$	Temp	<int></int>	67,	72,	74,	62,	56,	66,	65,	59,	61,
\$	Month	<int></int>	5,5	, 5	, <u>5</u> ,	5,	5, 5	, 5,	5,	5, 5	, <mark>5</mark> ,
\$	Day	<int></int>	1, 2	, 3	, 4,	5,	6, 7	, 8,	9,	10, 1	11, 1

Validating data values

- We can certainly be reactive by just describing the data and looking for anomalies.
- For larger data or multiple data files it makes sense to be proactive and catch errors that you want to avoid, before exploring for new errors.
- The assertthat package provides nice tools to do this

Note to self: I don't do this enough. This is a good defensive programming technique that can catch crucial problems that aren't always automatically flagged as errors

Being assertive

library(assertthat)
assert_that(all(between(airquality\$Day, 1, 31)))

[1] TRUE

assert_that(is.factor(mpg\$manufacturer))

Error: mpg\$manufacturer is not a factor

assert_that(all(beaches\$season_name %in% c('Summer','Winter','Spring', 'Fall')))

Error: Elements 11, 12, 13, 14, 15, ... of beaches\$season_name %in% c("Summer", "Winter", "Spring", "Fall") are

Being assertive

- assert_that generates an error, which will stop things
- see_if does the same validation, but just generates a TRUE/FALSE, which you can capture

see_if(is.factor(mpg\$manufacturer))

[1] FALSE
attr(,"msg")
[1] "mpg\$manufacturer is not a factor"

• validate_that generates TRUE if the assertion is true, otherwise generates a string explaining the error

validate_that(is.factor(mpg\$manufacturer))

[1] "mpg\$manufacturer is not a factor"

validate_that(is.character(mpg\$manufacturer))

[1] TRUE

Being assertive

You can even write your own validation functions and custom messages

```
is_odd <- function(x){
    assert_that(is.numeric(x), length(x)==1)
    x %% 2 == 1
}
assert_that(is_odd(2))</pre>
```

Error: is_odd(x = 2) is not TRUE

on_failure(is_odd) <- function(call, env) {
 paste0(deparse(call\$x), " is even") # This is a R trick
}
assert_that(is_odd(2))</pre>

Error: 2 is even

is_odd(1:2)

Error: length(x) not equal to 1

BIOF 339: Practical R

R denotes missing data as NA, and supplies several functions to deal with missing data.

The most fundamental is is.na, which gives a TRUE/FALSE answer

is.na(NA)		
[1] TRUE		
is.na(25)		
[1] FALSE		

When we get a new dataset, it's useful to get a sense of the missingness

mpg %>% summarize(across(everything(), function(x) sum(is.na(x))))

#	A tibble: 1 × 11										
	manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1	Θ	Θ	Θ	0	Θ	Θ	Θ	Θ	Θ	Θ	0

The naniar package allows a tidyverse-compatible way to deal with missing data

library(naniar)
weather <- rio::import('../data/weather.csv')
all_complete(mpg)</pre>

[1] TRUE

all_complete(weather)

[1] FALSE

weather %>% summarize_all(pct_complete)

id year month element d2 d1 d3 d4 d5 d6 100 9.090909 18.18182 18.18182 9.090909 36.36364 9.090909 1 100 100 100 d7 d8 d9 d10 d11 d12 d13 d14 d15 1 9.090909 9.090909 0 9.090909 9.090909 0 9.090909 18.18182 9.090909 d17 d18 d19 d20 d21 d22 d25 d16 d23 d24 d26 d27 1 9.090909 9.090909 00 00 0 18.18182 0 9.090909 9.090909 27.27273 d28 d29 d30 d31 1 9.090909 18.18182 9.090909 9.090909

gg_miss_case(weather, show_pct = T)

gg_miss_var(weather, show_pct=T)

Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please use `guide = "none"` instead.

Are there patterns to the missing data

- Most analyses assume that data is either
 - Missing completely at random (MCAR)
 - Missing at random (MAR)
- MCAR means
 - The missing data is just a random subset of the data
- MAR means
 - Whether data is missing is related to values of some other variable(s)
 - If we control for those variable(s), the missing data would form a random subset of each of those data subsets defined by unique values of these variables

Are there patterns to the missing data

MAR or MCAR allows us to ignore the missing data, since it doesn't bias our analyses

If data are not MCAR or MAR, we really need to understand the issing data mechanism and how that might affect our results.

Co-patterns of missingness

gg_miss_upset(airquality)

gg_miss_upset(riskfactors)

Co-patterns of missingness

Warning: Removed 42 rows containing missing values

ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_miss_point()

Co-patterns of missingness

gg_miss_fct(x = riskfactors, fct = marital)

Replacing missing data

tidyr has a function replace_na which will replace all missing values with some particular value.

In the weather dataset, values are missing generally because there wasn't recorded rainfall on a day. So these values should really be 0

```
weather1 <- weather %>% mutate(d1 = replace_na(d1, 0))
pct_miss(weather1$d1)
```

[1] 0

Question: How would you replace all the missing values with O?

weather %>% mutate(across(everything(),function(x) replace_na(x, 0)))

How would you replace the missing values with the mean of the variable?

weather %>% mutate(across(where(is.numeric), function(x) replace_na(x, mean(x, na.rm=T))))

BIOF 339: Practical R