
Classical statistical modelsClassical statistical models
Abhijit DasguptaAbhijit Dasgupta

BIOF 339BIOF 339

2

Statistical modelsStatistical models

33

All models are wrong, but some are usefulAll models are wrong, but some are useful
G.E.P. BoxG.E.P. Box

44

Models
Models are our way of understanding nature, usually using some sort of mathematical expression

Famous mathematical models include Newton's second law of motion, the laws of thermodynamics, the ideal gas law

All probability distributions, like Gaussian, Binomial, Poisson, Gamma, are models

Mendel's laws are models that result in particular mathematical models for inheritance and population prevalence

5

Models
We use models all the time to describe our understanding of different processes

Cause-and-effect relationships
Supply-demand curves
Financial planning
Optimizing travel plans (perhaps including traffic like Google Maps)
Understanding the effects of change

Climate change
Rule changes via Congress or companies
Effect of a drug on disease outcomes
Effect of education and behavioral patterns on future earnings

6

Data-driven models
Can we use data collected on various aspects of a particular context to understand the relationships
between the different aspects?

How does increased smoking affect your risk of getting lung cancer? (causality/association)
Does genetics matter?
Does the kind of smoking matter?
Does gender matter?

7

Data-driven models
Can we use data collected on various aspects of a particular context to understand the relationships
between the different aspects?

What is your lifetime risk of breast cancer? (prediction)
What if you have a sister with breast cancer?
What if you had early menarche?
What if you are of Ashkenazi Jewish heritage?

The Gail Model from NCI

8

https://bcrisktool.cancer.gov/

Association models
These are more traditional, highly interpretative models that look at how different predictors
affect outcome.

Linear regression
Logistic regression
Cox proportional hazards regression
Decision trees

Since these models have a particular known structure determined by the modeler, they can be used on relatively small
datasets

You can easily understand which predictors have more "weight" in influencing the outcome

You can literally write down how a prediction would be made

9

Predictive models
These are more recent models that primarily look to provide good predictions of an outcome, and the way the
predictions are made is left opaque (often called a black box)

Deep Learning (or Neural Networks)
Random Forests
Support Vector Machines
Gradient Boosting Machines

These models require data to both determine the structure of the model as well as make the predictions, so they
require lots of data to train on

The relative "weight" of predictors in influencing the predictions can be obtained

The effect of individual predictors is not easily interpretable, though this is changing

They require a different philosophic perspective than traditional association models

10

R for statistical models
We've seen that R is great for data munging and data visualizations

R also can fit a wide variety of statistical models to data.

In fact, most new models first are implemented in R (see CRAN and GitHub)

Today we'll describe some standard popular models. Fitting most models follow the same pattern of code.

11

Datasets
We will use the pbc data from the survival package, and the in-built mtcars dataset.

library(survival)
str(pbc)

'data.frame': 418 obs. of 20 variables:
 $ id : int 1 2 3 4 5 6 7 8 9 10 ...
 $ time : int 400 4500 1012 1925 1504 2503 1832 2466 2400 51 ...
 $ status : int 2 0 2 2 1 2 0 2 2 2 ...
 $ trt : int 1 1 1 1 2 2 2 2 1 2 ...
 $ age : num 58.8 56.4 70.1 54.7 38.1 ...
 $ sex : Factor w/ 2 levels "m","f": 2 2 1 2 2 2 2 2 2 2 ...
 $ ascites : int 1 0 0 0 0 0 0 0 0 1 ...
 $ hepato : int 1 1 0 1 1 1 1 0 0 0 ...
 $ spiders : int 1 1 0 1 1 0 0 0 1 1 ...
 $ edema : num 1 0 0.5 0.5 0 0 0 0 0 1 ...
 $ bili : num 14.5 1.1 1.4 1.8 3.4 0.8 1 0.3 3.2 12.6 ...
 $ chol : int 261 302 176 244 279 248 322 280 562 200 ...
 $ albumin : num 2.6 4.14 3.48 2.54 3.53 3.98 4.09 4 3.08 2.74 ...
 $ copper : int 156 54 210 64 143 50 52 52 79 140 ...
 $ alk.phos: num 1718 7395 516 6122 671 ...
 $ ast : num 137.9 113.5 96.1 60.6 113.2 ...
 $ trig : int 172 88 55 92 72 63 213 189 88 143 ...
 $ platelet: int 190 221 151 183 136 NA 204 373 251 302 ...
 $ protime : num 12.2 10.6 12 10.3 10.9 11 9.7 11 11 11.5 ...
 $ stage : int 4 3 4 4 3 3 3 3 2 4 ...

12

The formula interfaceThe formula interface

1313

Representing model relationships
In R, there is a particularly convenient way to express models, where you have

one dependent variable
one or more independent variables, with possible transformations and interactions

y ~ x1 + x2 + x1:x2 + I(x3^2) + x4*x5

y depends on ...

x1 and x2 linearly
the interaction of x1 and x2 (represented as x1:x2)
the square of x3 (the I() notation ensures that the ^ symbol is interpreted correctly)
x4, x5 and their interaction (same as x4 + x5 + x4:x5)

14

Representing model relationships
y ~ x1 + x2 + x1:x2 + I(x3^2) + x4*x5

This interpretation holds for the vast majority of statistical models in R

For decision trees and random forests and neural networks, don't add interactions or transformations, since the
model will try to figure those out on their own

15

Our first model
myLinearModel <- lm(chol ~ bili + albumin + copper + sex, data = pbc)

Note that everything in R is an object, so you can store a model in a variable name.

This statement runs the model and stored the fitted model in myLinearModel

R does not interpret the model, evaluate the adequacy or appropriateness of the model, or comment on
whether looking at the relationship between cholesterol and bilirubin makes any kind of sense.

It just fits the model it is given

16

Our first model
myLinearModel

Call:
lm(formula = chol ~ bili + albumin + copper + sex, data = pbc)

Coefficients:
(Intercept) bili albumin copper sexf
 221.0571 22.7113 28.9076 -0.1888 -9.7605

Not very informative, is it?

17

Our first model
summary(myLinearModel)

Call:
lm(formula = chol ~ bili + albumin + copper + sex, data = pbc)

Residuals:
 Min 1Q Median 3Q Max
-580.83 -90.62 -34.79 37.96 1297.16

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 221.0571 135.6962 1.629 0.104
bili 22.7113 3.2821 6.920 3.14e-11 ***
albumin 28.9076 33.8309 0.854 0.394
copper -0.1888 0.1743 -1.083 0.280
sexf -9.7605 40.8253 -0.239 0.811

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 214.3 on 277 degrees of freedom
 (136 observations deleted due to missingness)
Multiple R-squared: 0.1638, Adjusted R-squared: 0.1517
F-statistic: 13.56 on 4 and 277 DF, p-value: 4.147e-10

A little better

18

Our first model
broom::tidy(myLinearModel)

A tibble: 5 × 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 221. 136. 1.63 1.04e- 1
2 bili 22.7 3.28 6.92 3.14e-11
3 albumin 28.9 33.8 0.854 3.94e- 1
4 copper -0.189 0.174 -1.08 2.80e- 1
5 sexf -9.76 40.8 -0.239 8.11e- 1

broom::glance(myLinearModel)

A tibble: 1 × 12
 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.164 0.152 214. 13.6 4.15e-10 4 -1911. 3834. 3856.
… with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

19

library(gtsummary)
tbl_regression(myLinearModel)

Characteristic Beta 95% CI p-value

bili 23 16, 29 <0.001

albumin 29 -38, 96 0.4

copper -0.19 -0.53, 0.15 0.3

sex

m — —

f -9.8 -90, 71 0.8

CI = Confidence Interval

library(stargazer)
stargazer(myLinearModel, type='html')

Dependent variable:

chol

bili 22.711

(3.282)

albumin 28.908

(33.831)

copper -0.189

(0.174)

sexf -9.760

(40.825)

Constant 221.057

Our first model

1

1

20

install.packages('ggfortify')
library(ggfortify)
autoplot(myLinearModel)

Our first model
We do need some sense as to how well this model fit the data

21

ggplot(pbc, aes(x = bili))+geom_density()

We'd like this to be a bit more "Gaussian" for better
behavior

Our first model
Let's see if we have some strangeness going on

22

ggplot(pbc, aes(x = log(bili)))+geom_density()

Our first model
Let's see if we have some strangeness going on

23

Our first model
myLinearModel2 <- lm(chol~log(bili) + albumin + copper + sex, data = pbc)
summary(myLinearModel2)

Call:
lm(formula = chol ~ log(bili) + albumin + copper + sex, data = pbc)

Residuals:
 Min 1Q Median 3Q Max
-448.77 -96.23 -26.77 40.76 1221.21

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 128.3685 132.9579 0.965 0.3351
log(bili) 124.2339 14.8852 8.346 3.39e-15 ***
albumin 53.6093 33.2245 1.614 0.1078
copper -0.3775 0.1743 -2.166 0.0312 *
sexf 19.6595 39.1715 0.502 0.6161

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 207.4 on 277 degrees of freedom
 (136 observations deleted due to missingness)
Multiple R-squared: 0.2163, Adjusted R-squared: 0.205
F-statistic: 19.11 on 4 and 277 DF, p-value: 6.792e-14

24

Our first model
tbl_regression(myLinearModel2)

Characteristic Beta 95% CI p-value

log(bili) 124 95, 154 <0.001

albumin 54 -12, 119 0.11

copper -0.38 -0.72, -0.03 0.031

sex

m — —

f 20 -57, 97 0.6

CI = Confidence Interval

1

1

25

Our first model
autoplot(myLinearModel2)

26

Just the residual plot, please
autoplot(myLinearModel2, which=1)

27

Just the residual plot, please
d <- broom::augment(myLinearModel2, newdata=pbc)
d

A tibble: 418 × 22
 id time status trt age sex ascites hepato spiders edema bili chol
 <int> <int> <int> <int> <dbl> <fct> <int> <int> <int> <dbl> <dbl> <int>
 1 1 400 2 1 58.8 f 1 1 1 1 14.5 261
 2 2 4500 0 1 56.4 f 0 1 1 0 1.1 302
 3 3 1012 2 1 70.1 m 0 0 0 0.5 1.4 176
 4 4 1925 2 1 54.7 f 0 1 1 0.5 1.8 244
 5 5 1504 1 2 38.1 f 0 1 1 0 3.4 279
 6 6 2503 2 2 66.3 f 0 1 0 0 0.8 248
 7 7 1832 0 2 55.5 f 0 1 0 0 1 322
 8 8 2466 2 2 53.1 f 0 0 0 0 0.3 280
 9 9 2400 2 1 42.5 f 0 0 1 0 3.2 562
10 10 51 2 2 70.6 f 1 0 1 1 12.6 200
… with 408 more rows, and 10 more variables: albumin <dbl>, copper <int>,
alk.phos <dbl>, ast <dbl>, trig <int>, platelet <int>, protime <dbl>,
stage <int>, .fitted <dbl>, .resid <dbl>

28

Just the residual plot, please
ggplot(d, aes(x = .fitted, y = .resid))+geom_point()+ geom_smooth(se=F)+
 labs(x = 'Fitted values', y = 'Residual values')+
 geom_hline(yintercept=0, linetype=2) +
 theme_classic()

29

Predictions
head(predict(myLinearModel2, newdata = pbc))

 1 2 3 4 5 6
560.7384 361.4248 277.4503 333.0571 435.3173 314.7947

The newdata has to have the same format and components as the original data the model was trained on

30

Categorical predictors
myLM3 <- lm(chol ~ log(bili) + sex, data = pbc)
broom::tidy(myLM3)

A tibble: 3 × 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 283. 36.6 7.71 2.14e-13
2 log(bili) 99.6 12.1 8.22 7.37e-15
3 sexf 32.5 37.8 0.858 3.92e- 1

R has a somewhat unfortunate notation for categorical varialbes here, as {variable name}{level}

31

Logistic regressionLogistic regression

3232

The logistic transformation
For an outcome which is binary (0/1), what is really modeled is the probability that the outcome is 1, usually denoted by
p.

However, we know , so what if the model gives a prediction outside this range!!

The logistic transform takes p to

and we model logit(p), which has a range from to

0 ≤ p ≤ 1

logit(p) = log()
p

1 − p

−∞ ∞

33

Logistic regression
Logistic regression is a special case of a generalized linear model, so the function we use to run a logistic regression is
glm

myLR <- glm(spiders ~ albumin + bili + chol, data = pbc, family = binomial)
myLR

Call: glm(formula = spiders ~ albumin + bili + chol, family = binomial,
 data = pbc)

Coefficients:
(Intercept) albumin bili chol
 2.3326484 -0.9954927 0.0995915 -0.0003176

Degrees of Freedom: 283 Total (i.e. Null); 280 Residual
 (134 observations deleted due to missingness)
Null Deviance: 341.4
Residual Deviance: 315.2 AIC: 323.2

We have to add the family = binomial as an argument, since this is a special kind of GLM
All these models only use complete data; they kick out rows with missing data

34

Logistic regression
broom::tidy(myLR)

A tibble: 4 × 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 2.33 1.30 1.80 0.0717
2 albumin -0.995 0.362 -2.75 0.00595
3 bili 0.0996 0.0344 2.89 0.00381
4 chol -0.000318 0.000615 -0.517 0.605

broom::glance(myLR)

A tibble: 1 × 8
 null.deviance df.null logLik AIC BIC deviance df.residual nobs
 <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 341. 283 -158. 323. 338. 315. 280 284

35

Logistic regression
tbl_regression(myLR)

Characteristic log(OR) 95% CI p-value

albumin -1.0 -1.7, -0.30 0.006

bili 0.10 0.04, 0.17 0.004

chol 0.00 0.00, 0.00 0.6

OR = Odds Ratio, CI = Confidence Interval

1 1

1

36

Logistic regression
tbl_regression(myLR, exponentiate = TRUE)

Characteristic OR 95% CI p-value

albumin 0.37 0.18, 0.74 0.006

bili 1.10 1.04, 1.19 0.004

chol 1.00 1.00, 1.00 0.6

OR = Odds Ratio, CI = Confidence Interval

1 1

1

37

Predictions from logistic regression
head(predict(myLR))

 1 2 3 4 5 6
 1.10554163 -1.77506554 -1.04814132 -0.09414055 -0.93144911 -1.62851203

These are on the "wrong" scale. We would expect probabilities

head(predict(myLR, type='response'))

 1 2 3 4 5 6
0.7512970 0.1449135 0.2595822 0.4764822 0.2826308 0.1640343

or you can use plogis(predict(myLR)) for the inverse logistic transform

38

Model selectionModel selection

3939

How to get the "best" model
Generally getting to the best model involves

looking at a lot of graphs
Fitting lots of models
Comparing the model fits to see what seems good

Sometimes if you have two models that fit about the same, you take the smaller, less complex model (Occam's Razor)

Generally it is not recommended that you use automated model selection methods. It screws up your error rates and
may not be the right end result for your objectives

Model building and selection is an art

40

Clues to follow
You can look at the relative weights (size of coefficient and its p-value) of different predictors

These weights will change once you change the model, so be aware of that

You can trim the number of variables based on collinearities

If several variables are essentially measuring the same thing, use one of them

You can look at residuals for clues about transformations

You can look at graphs, as well as science, for clues about interactions (synergies and antagonisms)

41

Automated model selection
install.packages('leaps')
library(leaps)
mtcars1 <- mtcars %>% mutate(across(c(cyl, vs:carb), as.factor))
all_subsets <- regsubsets(mpg~., data = mtcars1)
all_subsets

Subset selection object
Call: regsubsets.formula(mpg ~ ., data = mtcars1)
16 Variables (and intercept)
 Forced in Forced out
cyl6 FALSE FALSE
cyl8 FALSE FALSE
disp FALSE FALSE
hp FALSE FALSE
drat FALSE FALSE
wt FALSE FALSE
qsec FALSE FALSE
vs1 FALSE FALSE
am1 FALSE FALSE
gear4 FALSE FALSE
gear5 FALSE FALSE
carb2 FALSE FALSE
carb3 FALSE FALSE
carb4 FALSE FALSE
carb6 FALSE FALSE
carb8 FALSE FALSE
1 subsets of each size up to 8
Selection Algorithm: exhaustive 42

Automated model selection
Which has the best R ?

ind <- which.max(summary(all_subsets)$adjr2)
summary(all_subsets)$which[ind,]

(Intercept) cyl6 cyl8 disp hp drat
 TRUE TRUE FALSE FALSE TRUE FALSE
 wt qsec vs1 am1 gear4 gear5
 TRUE FALSE TRUE TRUE FALSE FALSE
 carb2 carb3 carb4 carb6 carb8
 FALSE FALSE FALSE FALSE FALSE

2

43

