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Goals
Learn how to join data sets (merging)
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Data
This data set is taken from a breast cancer proteome database available here and modified for this exercise.

Clinical data: data/BreastCancer_Clinical.xlsx
Proteome data: data/BreastCancer_Expression.xlsx

These data are available in the class Canvas page and the expectation is that you will save them to the data
folder of your project.

3

https://www.kaggle.com/piotrgrabo/breastcancerproteomes
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Putting data sets together
Quite often, data on individuals lie in different tables

Clinical, demographic and bioinformatic data
Drug, procedure, and payment data (think Medicare)
Personal health data across different healthcare entities
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Joining data sets
The simplest case is when we just need to add more data to existing data

New patients in study, with same protocol (add rows)
Adding pathology, imaging data for existing patients (add columns)
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cbind(x,y)


Data sets have same subjects/observations, but new
variables

rbind(x,y)


Data sets have same variables, but new subjects

Joining data sets
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We will talk about more general ways of joining two
datasets

We will assume:

1. We have two rectangular data sets (so data.frame
or tibble)

2. There is at least one variable (column) in common,
even if they have different names

Patient ID number
SSN (Social Security number)
Identifiable information

Joining data sets
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Joining data sets

inner_join left_join right_join outer_join

The "join condition" are the common variables in the two datasets, i.e. rows are selected if the values of the common
variables in the left dataset matches the values of the common variables in the right dataset

These functions are available in the dplyr package.
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clinical proteome

A breast cancer example

library(readxl)
clinical <- read_excel('data/BreastCancer_Clinical.xlsx', 
                       .name_repair = 'universal') # See ?tibble::tibble
proteome <- read_excel('data/BreastCancer_Expression.xlsx', 
                       .name_repair = 'universal')

# A tibble: 105 × 30
   Complete.TCGA.ID Gender Age.at.Initial.… ER.Statu
   <chr>            <chr>             <dbl> <chr>   
 1 TCGA-A2-A0T2     FEMALE               66 Negative
 2 TCGA-A2-A0CM     FEMALE               40 Negative
 3 TCGA-BH-A18V     FEMALE               48 Negative
 4 TCGA-BH-A18Q     FEMALE               56 Negative
 5 TCGA-BH-A0E0     FEMALE               38 Negative
 6 TCGA-A7-A0CE     FEMALE               57 Negative
 7 TCGA-D8-A142     FEMALE               74 Negative
 8 TCGA-A2-A0D0     FEMALE               60 Negative
 9 TCGA-AO-A0J6     FEMALE               61 Negative
10 TCGA-A2-A0YM     FEMALE               67 Negative
# … with 95 more rows, and 24 more variables: Tumor 
#   Tumor..T1.Coded <chr>, Node <chr>, Node.Coded <c
#   Metastasis.Coded <chr>, AJCC.Stage <chr>, Conver
#   Survival.Data.Form <chr>, Vital.Status <chr>,
#   Days.to.Date.of.Last.Contact <dbl>, Days.to.date
#   OS.event <dbl>, OS.Time <dbl>, PAM50.mRNA <chr>,

# A tibble: 83 × 11
   TCGA_ID NP_958782 NP_958785 NP_958786 NP_000436 N
   <chr>       <dbl>     <dbl>     <dbl>     <dbl>  
 1 TCGA-A…     1.10      1.11      1.11      1.11   
 2 TCGA-C…     2.61      2.65      2.65      2.65   
 3 TCGA-A…    -0.660    -0.649    -0.654    -0.632  
 4 TCGA-B…     0.195     0.215     0.215     0.205  
 5 TCGA-C…    -0.494    -0.504    -0.501    -0.510  
 6 TCGA-C…     2.77      2.78      2.78      2.80   
 7 TCGA-E…     0.863     0.870     0.870     0.866  
 8 TCGA-C…     1.41      1.41      1.41      1.41   
 9 TCGA-A…     1.19      1.19      1.19      1.19   
10 TCGA-A…     1.10      1.10      1.10      1.10   
# … with 73 more rows, and 3 more variables: NP_9587
#   NP_001611 <dbl>
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clinical[,1:2]

# A tibble: 105 × 2
   Complete.TCGA.ID Gender
   <chr>            <chr> 
 1 TCGA-A2-A0T2     FEMALE
 2 TCGA-A2-A0CM     FEMALE
 3 TCGA-BH-A18V     FEMALE
 4 TCGA-BH-A18Q     FEMALE
 5 TCGA-BH-A0E0     FEMALE
 6 TCGA-A7-A0CE     FEMALE
 7 TCGA-D8-A142     FEMALE
 8 TCGA-A2-A0D0     FEMALE
 9 TCGA-AO-A0J6     FEMALE
10 TCGA-A2-A0YM     FEMALE
# … with 95 more rows

proteome[,1:2]

# A tibble: 83 × 2
   TCGA_ID      NP_958782
   <chr>            <dbl>
 1 TCGA-AO-A12D     1.10 
 2 TCGA-C8-A131     2.61 
 3 TCGA-AO-A12B    -0.660
 4 TCGA-BH-A18Q     0.195
 5 TCGA-C8-A130    -0.494
 6 TCGA-C8-A138     2.77 
 7 TCGA-E2-A154     0.863
 8 TCGA-C8-A12L     1.41 
 9 TCGA-A2-A0EX     1.19 
10 TCGA-AO-A12D     1.10 
# … with 73 more rows

A breast cancer example

library(readxl)
clinical <- read_excel('data/BreastCancer_Clinical.xlsx', 
                       .name_repair = 'universal') 
proteome <- read_excel('data/BreastCancer_Expression.xlsx', 
                       .name_repair = 'universal')

We see that both have the same ID variable, but with different names and different orders
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A breast cancer example
Let's make sure that the ID's are truly IDs, i.e. each row has a unique value

length(unique(clinical$Complete.TCGA.ID)) == nrow(clinical)

[1] TRUE

length(unique(proteome$TCGA_ID)) == nrow(proteome)

[1] FALSE
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Data example
For convenience we'll keep the first instance for each ID in the proteome data

proteome <- proteome %>% filter(!duplicated(TCGA_ID))

duplicated = TRUE if a previous row contains the same value

length(unique(proteome$TCGA_ID)) == nrow(proteome)

[1] TRUE
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Keep only rows that have common ids between the
two data, and add columns
The joined data will have no more rows than either
data, but more columns than each

Inner join
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Inner join

common_rows <- inner_join(clinical[,1:6], proteome, 
                          by=c('Complete.TCGA.ID'='TCGA_ID'))

# A tibble: 77 × 16
   Complete.TCGA.ID Gender Age.at.Initial.… ER.Status PR.Status HER2.Final.Stat…
   <chr>            <chr>             <dbl> <chr>     <chr>     <chr>           
 1 TCGA-A2-A0CM     FEMALE               40 Negative  Negative  Negative        
 2 TCGA-BH-A18Q     FEMALE               56 Negative  Negative  Negative        
 3 TCGA-A7-A0CE     FEMALE               57 Negative  Negative  Negative        
 4 TCGA-D8-A142     FEMALE               74 Negative  Negative  Negative        
 5 TCGA-AO-A0J6     FEMALE               61 Negative  Negative  Negative        
 6 TCGA-A2-A0YM     FEMALE               67 Negative  Negative  Negative        
 7 TCGA-A2-A0D2     FEMALE               45 Negative  Negative  Negative        
 8 TCGA-A2-A0SX     FEMALE               48 Negative  Negative  Negative        
 9 TCGA-AO-A0JL     FEMALE               59 Negative  Negative  Negative        
10 TCGA-AO-A12F     FEMALE               36 Negative  Negative  Negative        
# … with 67 more rows, and 10 more variables: NP_958782 <dbl>, NP_958785 <dbl>,
#   NP_958786 <dbl>, NP_000436 <dbl>, NP_958781 <dbl>, NP_958780 <dbl>,
#   NP_958783 <dbl>, NP_958784 <dbl>, NP_112598 <dbl>, NP_001611 <dbl>

Note that we have all the columns from both datasets, but only the common set of IDs from the two datasets

Without the by option, R will attempt to join on all column names that are common between the data sets. If
the ID columns have different names, you must use by. Even if they have the same names, it's good practice
to be explicity
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Keep all rows of left data, add columns from right
data only for rows with matching IDs
If a row in left data has no corresponding row in the
right data, the corresponding entries in the joined
data are replaced by NA
Joined data has same number of rows as left data,
but more columns.

Left join
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Left join

left_rows <- left_join(clinical[,1:6], proteome, by=c('Complete.TCGA.ID'='TCGA_ID'))

# A tibble: 105 × 16
  Complete.TCGA.ID Gender Age.at.Initial.Pathologic.Diagnosis ER.Status
  <chr>            <chr>                                <dbl> <chr>    
1 TCGA-A2-A0T2     FEMALE                                  66 Negative 
2 TCGA-A2-A0CM     FEMALE                                  40 Negative 
3 TCGA-BH-A18V     FEMALE                                  48 Negative 
  PR.Status HER2.Final.Status NP_958782 NP_958785 NP_958786 NP_000436 NP_958781
  <chr>     <chr>                 <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1 Negative  Negative             NA        NA        NA        NA        NA    
2 Negative  Negative              0.683     0.694     0.698     0.687     0.687
3 Negative  Negative             NA        NA        NA        NA        NA    
  NP_958780 NP_958783 NP_958784 NP_112598 NP_001611
      <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1    NA        NA        NA         NA       NA    
2     0.698     0.698     0.698     -2.65    -0.984
3    NA        NA        NA         NA       NA    
# … with 102 more rows

We get 105 rows, which is all the rows of clinical, combined with the rows of proteome with common IDs. The rest of
the rows get NA for the proteome columns.
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Keep all the rows of the right data, add
corresponding rows of left data on the left
Once again, if there are rows of right data that do
not have corresponding rows in left data, the
entries are filled with NA
The joined data has the same number of rows as
the right data, but more columns (attached to its
left). The order of the columns is the columns of the
left data followed by the columns of the right data

Right join
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Right join

right_rows <- right_join(clinical[,1:6], proteome, by=c('Complete.TCGA.ID'='TCGA_ID'))

# A tibble: 80 × 16
  Complete.TCGA.ID Gender Age.at.Initial.Pathologic.Diagnosis ER.Status
  <chr>            <chr>                                <dbl> <chr>    
1 TCGA-A2-A0CM     FEMALE                                  40 Negative 
2 TCGA-BH-A18Q     FEMALE                                  56 Negative 
3 TCGA-A7-A0CE     FEMALE                                  57 Negative 
  PR.Status HER2.Final.Status NP_958782 NP_958785 NP_958786 NP_000436 NP_958781
  <chr>     <chr>                 <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1 Negative  Negative              0.683     0.694     0.698     0.687     0.687
2 Negative  Negative              0.195     0.215     0.215     0.205     0.215
3 Negative  Negative             -1.12     -1.12     -1.12     -1.13     -1.13 
  NP_958780 NP_958783 NP_958784 NP_112598 NP_001611
      <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1     0.698     0.698     0.698     -2.65    -0.984
2     0.215     0.215     0.215     -1.04    -0.517
3    -1.12     -1.12     -1.12       2.24    -2.58 
# … with 77 more rows

Here we get 80 rows, which is all the rows of proteome, along with the rows of clinical with common IDs, but with the
columns of clinical appearing first.
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This is the kitchen sink join

All rows of the left and right data are included
Non-corresponding entries are filled with NA
The joined data set has at least as many rows as the
larger of the two data, and more columns than
either data.

Outer/Full Join
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Outer/Full Join

full_rows <- full_join(clinical[,1:6], proteome, by=c('Complete.TCGA.ID'='TCGA_ID'))

# A tibble: 108 × 16
  Complete.TCGA.ID Gender Age.at.Initial.Pathologic.Diagnosis ER.Status
  <chr>            <chr>                                <dbl> <chr>    
1 TCGA-A2-A0T2     FEMALE                                  66 Negative 
2 TCGA-A2-A0CM     FEMALE                                  40 Negative 
3 TCGA-BH-A18V     FEMALE                                  48 Negative 
  PR.Status HER2.Final.Status NP_958782 NP_958785 NP_958786 NP_000436 NP_958781
  <chr>     <chr>                 <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1 Negative  Negative             NA        NA        NA        NA        NA    
2 Negative  Negative              0.683     0.694     0.698     0.687     0.687
3 Negative  Negative             NA        NA        NA        NA        NA    
  NP_958780 NP_958783 NP_958784 NP_112598 NP_001611
      <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1    NA        NA        NA         NA       NA    
2     0.698     0.698     0.698     -2.65    -0.984
3    NA        NA        NA         NA       NA    
# … with 105 more rows

Here we obtain 108 rows and 16 columns. So we've expanded the data in both rows and columns, putting missing values
in where needed.
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Joins
In each of inner_join, left_join, right_join and full_join, the number of columns always increases

There are also two joins where the number of columns don't increase. They aren't really "joins" in that sense, but really
fancy filters on a dataset

Join Use Description

semi_join semi_join(A,B) Keep rows in A where ID matches some ID value in B

anti_join anti_join(A,B) Keep rows in A where ID does NOT match any ID value in B

These just filter the rows of A without adding any columns of B. These can be faster than dplyr::filter when dealing
with large data sets
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Putting it in a pipe
final_data <- clinical %>% 
  inner_join(proteome, by=c("Complete.TCGA.ID"="TCGA_ID")) %>% 
  filter(Gender =='FEMALE') %>% 
  select(Complete.TCGA.ID, Age.at.Initial.Pathologic.Diagnosis, ER.Status,
         starts_with("NP")) # grabs all the protein data

# A tibble: 75 × 13
  Complete.TCGA.ID Age.at.Initial.Pathologic.Diagnosis ER.Status NP_958782
  <chr>                                          <dbl> <chr>         <dbl>
1 TCGA-A2-A0CM                                      40 Negative      0.683
2 TCGA-BH-A18Q                                      56 Negative      0.195
3 TCGA-A7-A0CE                                      57 Negative     -1.12 
  NP_958785 NP_958786 NP_000436 NP_958781 NP_958780 NP_958783 NP_958784
      <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1     0.694     0.698     0.687     0.687     0.698     0.698     0.698
2     0.215     0.215     0.205     0.215     0.215     0.215     0.215
3    -1.12     -1.12     -1.13     -1.13     -1.12     -1.12     -1.12 
  NP_112598 NP_001611
      <dbl>     <dbl>
1     -2.65    -0.984
2     -1.04    -0.517
3      2.24    -2.58 
# … with 72 more rows
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Some notes
Joins are very much in the spirit of using SQL in databases
In SAS, if you use MERGE in the DATA step to create merged variables, you need to sort the data by the common
variables

This is a very expensive operation computationally
In SAS, you can avoid this by using PROC SQL
In R, this sorting is not necessary

Learning to join data sets efficiently is one of the coolest skills of a data scientist, and makes life infinitely easier

24



Example code: Joining many datasets together
Requirement: Pull together over 200 datasets of variant alleles and expressions (1 per subject/cell line)

library(dplyr)

fnames <- dir('~/Desktop/Sreya', full.names = TRUE) # Grab and store the paths to the individual files
ids <- stringr::str_extract(fnames, '[:alnum:]+') # The file names have the subject ids in them 
                                                  # as first bit of the string

## Data ingestion
data_corpus <- purrr::map(fnames, read_delim, delim='\t') # Creates a list of raw datasets

## Data munging
for (i in 1:length(data_corpus)){
  data_corpus[[i]] <- data_corpus[[i]] %>% # Note [[]] since I'm manipulating lists
    select(`Variant Allele`, HF) %>% # Keep only allele name and expression
    set_names("variant_allele", ids[i]) %>% # change column names to `variant_allele` and subject ID
    mutate(variant_allele = str_trim(variant_allele)) # Getting rid of extra spaces
}

## Data joining
data_merged <- Reduce(full_join, data_corpus) # Here is the join. This works since 
                                              # all the data sets have only `variant_allele` in common

We haven't seen two functions here: purrr::map and Reduce. I won't go into details here, but see the short
version on next slide.
Also notice that the number of files to be joined is never specified in the code. This
could work for any number
of files
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Example code: Joining many datasets together
The map function acts on a list (first argument) and applies a function (2nd argument) to each element, storing the
result in a list the same size as the first argument. You could replace the map function with a for loop, but map is
provably more efficient computationally. It is worth thinking about map like a for loop, though. Nice tutorial
Reduce is a very powerful function that is one of the functional programming functions in R, i.e., it is a function that
acts on functions. It takes as inputs a function (in our case, full_join), and a list (in our case, data_corpus). The
input function should take two arguments of the same type, as full_join does, and Reduce goes through the list,
applying the function to the first two elements of the list, then to the result and the 3rd element, then to the result
and 4th element,and so on.
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https://jennybc.github.io/purrr-tutorial/index.html

