
Practical R: FactorsPractical R: Factors
Abhijit DasguptaAbhijit Dasgupta

Categorical variables

2

What are categorical variables?
Categorical variables are variables that

have values defining categories of things
typically have a few unique values
may or may not be ordered
are not interval-scaled, i.e., their differences don't make sense per se

3

Non-ordered

1. Race (White, Black, Hispanic, Asian, Native
American)

2. Gender (Male, Female, Other)
3. Geographic regions (Africa, Asia, Europe, North

America, South America)
4. Genes/Proteins

Ordered

1. Income levels (< $10K, $10K - $25K, $25K - $75K, $75K
- $100K)

2. BMI categories (Underweight, Normal, Overweight,
Obese)

3. Number of bedrooms in houses (1 BR, 2BR, 3BR,
4BR)

What are categorical variables?

4

Categorical variables in R

5

The factor data type
R stores categorical variables as type factor.

You can coerce a character or numeric object into a factor using as.factor.
You can check if an object is a factor with is.factor.
You can create a factor with the function factor.

6

The factor data type
factor(x = character(), levels, labels = levels,
exclude = NA, ordered = is.ordered(x),
nmax = NA)

factor returns an object of class "factor" which has a set of integer codes the length of x with a "levels"
attribute of mode character and unique

Internally, each level of a factor is coded as an integer
Each such integer has a corresponding level which is a character, describing the level.
You can add labels to each level to change the printed form of the factor.

7

as.integer(xf)

[1] 2 3 1 2 3

District = 1, Maryland = 2, Virginia = 3

as.character(xf)

Get original characters back

The factor data type

x <- c('Maryland','Virginia', 'District', 'Maryland','Virginia') # a character vector
xf <- as.factor(x)
xf

[1] Maryland Virginia District Maryland Virginia
Levels: District Maryland Virginia

There are three levels, that by default are in alphabetical order

[1] "Maryland" "Virginia" "District" "Maryland" "Vir

8

as.numeric(yf)

[1] 3 1 4 2 3 1

Note, we don't get original integers back!!
3 = 1, 4 = 2, 5 = 3, 9 = 4

as.numeric(as.character(yf))

[1] 5 3 9 4 5 3

This is how you get numbers back

The factor data type

y <- c(5, 3, 9, 4, 5, 3)
yf <- as.factor(y)
yf

[1] 5 3 9 4 5 3
Levels: 3 4 5 9

Levels are still in alphanumeric order

9

x <- c('MD','DC','VA','MD','DC')
xf <- factor(x)
unclass(xf)

[1] 2 1 3 2 1
attr(,"levels")
[1] "DC" "MD" "VA"

x <- c('MD','DC','VA','MD','DC')
xf <- factor(x, levels = c('MD','DC','VA'))
unclass(xf)

[1] 1 2 3 1 2
attr(,"levels")
[1] "MD" "DC" "VA"

The factor data type

If I change the level designation, the underlying coding changes
This is important when a factor is an independent variable in a regression model

10

x <- mpg$drv
xf <- factor(x,
 levels = c('4-wheel','Front wheel',
 'Rear wheel'))
head(xf)

[1] <NA> <NA> <NA> <NA> <NA> <NA>
Levels: 4-wheel Front wheel Rear wheel

 levels = c('4', 'f','r'),
 labels = c('4-wheel','Front wheel',
 'Rear wheel'))

The factor data type
The drv variable in the mpg dataset tells us the kind of drive (front, rear or 4-wheel) each car has. However
it's coded as f,
r, and 4, which is not great for display purposes. We can re-label these levels, but we have to be a bit careful

Levels have to match what's actually in the original data, but you can re-label the levels.

[1] Front wheel Front wheel Front wheel Front wheel
Levels: 4-wheel Front wheel Rear wheel

x <- mpg$drv
xf <- factor(x,

head(xf)

11

Why factors?

12

ggplot(mpg,
 aes(year, cty))+
 geom_boxplot()

ggplot(mpg,
 aes(as.factor(year), cty))+
 geom_boxplot()

Factors are R's discrete data type
Factors are interpreted as discrete by R's functions

Warning: Continuous x aesthetic -- did you forget ae

13

 (Intercept) speciesChinstrap speciesGentoo
1 1 0 0
2 1 0 0
3 1 1 0
4 1 1 0
5 1 0 1
6 1 0 1
attr(,"assign")
[1] 0 1 1
attr(,"contrasts")
attr(,"contrasts")$species
[1] "contr.treatment"

If a factor has n levels, you get n-1 dummy variables
The level corresponding to integer code 1 is omitted
as the reference level

Dummy variables are automatically created from factors

Changing the base level (integer code 1) changes model interpretation since
it changes the reference level against
which all other levels are compared.

model.matrix(~species, data = palmerpenguins::pengui

14

Manipulating factors

The forcats package (part of tidyverse)

15

library(palmerpenguins)
m <- lm(body_mass_g ~ species, data = penguins)
broom::tidy(m)

Compare with Adele

p1 <- penguins %>%
 mutate(species = fct_relevel(species, 'Gentoo'))
m1 <- lm(body_mass_g ~ species, data=p1)
broom::tidy(m1)

Compare with Gentoo

Effect in models

Providing only one level to fct_relevel makes that the base level (integer code 1).

You can also fully specify all the levels in order, or partially specify them. If you partially specify them, the remaining
levels will be put in alphabetical order after the
ones you specify.

A tibble: 3 × 5
 term estimate std.error statistic p.
 <chr> <dbl> <dbl> <dbl>
1 (Intercept) 3701. 37.6 98.4 2.49
2 speciesChinstrap 32.4 67.5 0.480 6.31
3 speciesGentoo 1375. 56.1 24.5 5.42

A tibble: 3 × 5
 term estimate std.error statistic p.
 <chr> <dbl> <dbl> <dbl>
1 (Intercept) 5076. 41.7 122. 6.86
2 speciesAdelie -1375. 56.1 -24.5 5.42
3 speciesChinstrap -1343. 69.9 -19.2 3.21

16

ggplot(penguins,
 aes(x = species))+
 geom_bar()

ggplot(p1,
 aes(x = species))+
 geom_bar()

Effect in plots

Changes the order in which bars are plotted

17

x <- factor(str_split('statistics', '')[[1]],
 levels = letters)
x

p1 <- penguins %>% filter(species != 'Gentoo')
fct_count(p1$species)

A tibble: 3 × 2
 f n
 <fct> <int>
1 Adelie 152
2 Chinstrap 68
3 Gentoo 0

fct_drop(x)

 [1] s t a t i s t i c s
Levels: a c i s t

p1 <- p1 %>% mutate(species = fct_drop(species))
fct_count(p1$species)

A tibble: 2 × 2
 f n
 <fct> <int>
1 Adelie 152
2 Chinstrap 68

Extra levels

Getting rid of extra levels

Sometimes levels with no data show up in summaries or plots

 [1] s t a t i s t i c s
Levels: a b c d e f g h i j k l m n o p q r s t u v

18

ggplot(penguins,
 aes(x = species))+
 geom_bar()

ggplot(penguins,
 aes(x = fct_infreq(species)))+
 geom_bar()

Ordering levels by frequency

Ordering levels from most to least frequent

19

ggplot(penguins,
 aes(x = species,
 y = bill_length_mm))+
 geom_boxplot()

Ordering levels by values of another variable

fct_reorder is useful for ordering a plot by ascending or descending levels. This makes the plot easier to read.

ggplot(penguins,
 aes(x = fct_reorder(species, bill_length_mm,
 .fun=median, na.rm=T),
 y = bill_length_mm))+
 geom_boxplot() + labs(x = 'species')

20

ggplot(USArrests, aes(x=State, y = Murder))+
 geom_bar(stat = 'identity') +
 theme(axis.text = element_text(size=6))+
 coord_flip()

ggplot(USArrests, aes(
 x = fct_reorder(State, Murder),
 y = Murder))+
 geom_bar(stat = 'identity')+
 theme(axis.text = element_text(size=6))+
 coord_flip()

Ordering levels by values of another variable

USArrests <- USArrests %>% rownames_to_column('State')

21

ggplot(iris, aes(
 x = Sepal.Length,
 y = Sepal.Width,
 color = Species))+
 geom_smooth(se=F)

Order levels based on last values when plotting 2 variables
The level ordering also shows up in the order of levels in the legends of plots. Suppose you are plotting two variables,
grouped by a factor.

ggplot(iris, aes(
 x = Sepal.Length,
 y = Sepal.Width,
 color = fct_reorder2(Species,
 Sepal.Length, Sepal.Width)))+
 geom_smooth(se=F) + labs(color = 'Species')

22

Further exploration
1. forcats cheatsheet
2. Chapter 15 of R4DS

23

https://github.com/rstudio/cheatsheets/raw/master/factors.pdf
https://r4ds.had.co.nz/factors.html

