
Practical R: Data IngestionPractical R: Data Ingestion
Abhijit DasguptaAbhijit Dasgupta

BIOF 339BIOF 339

A quick refresh
We talked about various data structures in R
The primacy of the data.frame

Extracting individual variables from a data frame
breast_cancer$ER.Status, breast_cancer[,'ER.Status'], breast_cancer[['ER.Status']]
Extracting rows of a data.frame

Identifying data classes using the class function
Recognizing different classes: numeric, character, factor, Date, ..

testing for a class: is.numeric
converting to a class: as.numeric

2

RMarkdown tip of the day
You can add options to each R chunk to add or suppress output

Option Property

echo=TRUE/FALSE Does the document show the R code

eval=TRUE/FALSE Does the chunk get evaluated by R

message=TRUE/FALSE Do messages get printed

warning=TRUE/FALSE Do warnings get printed

You can also set these globally in a RMD file by putting the following in the first R chunk:

knitr::opts_chunk$set(echo=T, eval=T, message=F, warning=F)

See here for the full gory details

Note that the correct way to write TRUE and FALSE is all caps. They can be shortened to T and F respectively, but it's better to get used
to the full word.

3

https://yihui.name/knitr/options/#chunk-options

Package tip of the semester
Use

library(tidyverse)

or

pacman::p_load('tidyverse')

for pretty much every R script and R Markdown file (put this at the top of a script file, but after the header in a R
Markdown)

4

Data ingestion

5

Data ingestion
Unlike Excel, you have to pull data into R for R to operate on it

Typically your data is in some sort of file (Excel, csv, sas7bdat, dta, txt)

You need to find a way to pull it into R

The GUI you've used is one way, but not very programmatic

6

Data ingestion

Type Function Package Notes

csv read_csv readr Takes care of formatting

csv read.csv base Built in

csv fread data.table Fastest

Excel read_excel readxl

sas7bdat read_sas haven SAS format

sav read_spss haven SPSS format

dta read_dta haven Stata format

7

str(brca_clinical) str(brca_clinical2)

Data ingestion
We will use this csv data and this Excel data for the following:

brca_clinical <- readr::read_csv('../data/BreastCancer_Clinical.csv')
brca_clinical2 <- data.table::fread('../data/BreastCancer_Clinical.csv')

spec_tbl_df [77 × 30] (S3: spec_tbl_df/tbl_df/tbl/da
 $ Complete TCGA ID : chr [1:77] "
 $ Gender : chr [1:77] "
 $ Age at Initial Pathologic Diagnosis: num [1:77] 4
 $ ER Status : chr [1:77] "
 $ PR Status : chr [1:77] "
 $ HER2 Final Status : chr [1:77] "
 $ Tumor : chr [1:77] "
 $ Tumor--T1 Coded : chr [1:77] "
 $ Node : chr [1:77] "
 $ Node-Coded : chr [1:77] "
 $ Metastasis : chr [1:77] "
 $ Metastasis-Coded : chr [1:77] "
 $ AJCC Stage : chr [1:77] "
 $ Converted Stage : chr [1:77] "
 $ Survival Data Form : chr [1:77] "
 $ Vital Status : chr [1:77] "
 $ Days to Date of Last Contact : num [1:77] 7
 $ Days to date of Death : num [1:77] 7

Classes 'data.table' and 'data.frame': 77 obs. of
 $ Complete TCGA ID : chr "TCGA-A
 $ Gender : chr "FEMALE
 $ Age at Initial Pathologic Diagnosis: int 40 56 5
 $ ER Status : chr "Negati
 $ PR Status : chr "Negati
 $ HER2 Final Status : chr "Negati
 $ Tumor : chr "T2" "T
 $ Tumor--T1 Coded : chr "T_Othe
 $ Node : chr "N0" "N
 $ Node-Coded : chr "Negati
 $ Metastasis : chr "M0" "M
 $ Metastasis-Coded : chr "Negati
 $ AJCC Stage : chr "Stage
 $ Converted Stage : chr "Stage
 $ Survival Data Form : chr "follow
 $ Vital Status : chr "DECEAS
 $ Days to Date of Last Contact : int 754 169
 $ Days to date of Death : num 754 169 8

file:///Users/abhijit/ARAASTAT/Teaching/BIOF339/docs/slides/lectures/data/BreastCancer_Clinical.csv
file:///Users/abhijit/ARAASTAT/Teaching/BIOF339/docs/slides/lectures/data/BreastCancer.xlsx

A tibble A data.table

A note on two "super"-data.frame objects

A tibble: 6 × 30
 `Complete TCGA ID` Gender `Age at Initial Patholog
 <chr> <chr> <
1 TCGA-A2-A0CM FEMALE
2 TCGA-BH-A18Q FEMALE
3 TCGA-A7-A0CE FEMALE
4 TCGA-D8-A142 FEMALE
5 TCGA-AO-A0J6 FEMALE
6 TCGA-A2-A0YM FEMALE
… with 25 more variables: HER2 Final Status <chr>,
Tumor--T1 Coded <chr>, Node <chr>, Node-Coded <c
Metastasis-Coded <chr>, AJCC Stage <chr>, Conver
Survival Data Form <chr>, Vital Status <chr>,
Days to Date of Last Contact <dbl>, Days to date
OS event <dbl>, OS Time <dbl>, PAM50 mRNA <chr>,
SigClust Unsupervised mRNA <dbl>, SigClust Intri

 Complete TCGA ID Gender Age at Initial Pathologic
1: TCGA-A2-A0CM FEMALE
2: TCGA-BH-A18Q FEMALE
3: TCGA-A7-A0CE FEMALE
4: TCGA-D8-A142 FEMALE
5: TCGA-AO-A0J6 FEMALE
6: TCGA-A2-A0YM FEMALE
 PR Status HER2 Final Status Tumor Tumor--T1 Coded
1: Negative Negative T2 T_Other
2: Negative Negative T2 T_Other
3: Negative Negative T2 T_Other
4: Negative Negative T3 T_Other
5: Negative Negative T2 T_Other
6: Negative Negative T2 T_Other
 Metastasis-Coded AJCC Stage Converted Stage Survi
1: Negative Stage IIA Stage IIA
2: Negative Stage IIB No_Conversion
3: Negative Stage IIA Stage IIA
4: Negative Stage IIB Stage IIB
5: Negative Stage IIA Stage IIA
6: Negative Stage IIA Stage IIA
 Days to Date of Last Contact Days to date of Deat
1: 754 75
2: 1692 169
3: 309 N
4: 425 N
5: 775 N 9

A note on two "super"-data.frame objects
A tibble works pretty much like any data.frame, but the printing is a little saner
A data.table is faster, has more inherent functionality, but has a very different syntax

We'll work almost entirely with tibble's and not data.table

Suggested modifications:

If using fread, convert the resulting object to a data.frame or tibble using as_data_frame() or as_tibble()
Convert the column names to not have spaces using, for example,

brca_clinical <- janitor::clean_names(brca_clinical)

10

11

Data ingestion
Note that you have to give a name to what you're importing using read_* or whatever you're using, otherwise it won't
stay in R

brca_clinical <- readr::read_csv('../data/BreastCancer_Clinical.csv')

See what happens if you don't give a name to a dataset you ingest.

12

Reading Excel
You can find the names of the sheets in an Excel file:

readxl::excel_sheets('../data/BreastCancer.xlsx')

[1] "Cllinical" "Expression"

So you can ingest a particular sheet from an Excel file using

brca_expression <- readxl::read_excel('../data/BreastCancer.xlsx', sheet='Expression')

13

Data export

14

Data export

Type Function Package Notes

csv write_csv readr Takes care of formatting

csv write.csv base Built in

csv fwrite data.table Fastest

Excel write.xlsx openxlsx

sas7bdat write_sas haven SAS format

sav write_spss haven SPSS format

dta write_dta haven Stata format

We'll often save tabular results using these functions

These can also be useful for exporting results, but the R Markdown related packages are better for that

15

BIOF 339: Practical R

Simplifying import/export
We'll be using a package that makes this easier.

It's called rio and it has two basic functions: import and export.

The rio package uses the different packages mentioned earlier but unifies it into a single syntax

For example:

rio::import('data/clinical_data_breast_cancer_modified.csv')

rio reads the end of the file being imported or exported and decides which functions from which package should be
used for the job.

rio accesses different packages that are right for each job, so you don't have to.

16

BIOF 339: Practical R

Simplifying import/export
You can also import multiple sheets from Excel, or multiple objects from .RData files, into a list of data frames

dat <- rio::import_list('data/BreastCancer.xlsx')

class(dat)

[1] "list"

names(dat)

[1] "Cllinical" "Expression"

map_chr(dat, class)

 Cllinical Expression
"data.frame" "data.frame"

17

BIOF 339: Practical R

Saving your work
You would often like to store intermediate datasets, and final datasets, so that you can access them quickly.

There are several ways of saving even large datasets so that they can be quickly accessed.

Function Package Example Retrieving the stored data

saveRDS base saveRDS(weather, file = 'weather.rds') weather <- readRDS('weather.rds')

write_fst fst write_fst(weather, file='weather.fst') weather <- read_fst('weather.fst')

These methods are meant for storing single objects

18

BIOF 339: Practical R

Saving your work
If you want to store all of your objects into a single file, you can store them in a .RData file.

save.image(file="<filename>.RData")

To keep multiple specified objects in a .RData file,

save(<obj1>, <obj2>, <obj3>, file = "<filename>.RData")

Retrieving your work
You can retrieve the objects in a .RData file using the function load.

load(file = "<filename>.RData")

This will store each object in its original name in your R environment.

19

