
Practical R: Functions and LoopsPractical R: Functions and Loops
Abhijit DasguptaAbhijit Dasgupta

BIOF 339BIOF 339

FunctionsFunctions

22

Why do we need functions?
When you are typing instructions to the computer, you might find yourself repeating the same instructions over and
over. So you end up copying and pasting code for each repitition.

Can make a mistake copying and pasting
If you need to change the instructions, you need to find every instance of it manually and change it, and you're
likely to miss one

The rule of thumb is, if you're copying the same code more than twice, write a function.

Write the instructions once
Change it in only one place, if needed

3

Defining functions
The basic syntax of a function is

<function name> <- function(<input argument(s)>){
 <code for instructions>
 ...
 <more code>
 return(<output object>)
}

4

ft2in(12) # 12 feet to inches [1] 144

Defining functions
Let's create our own function to convert feet to inches.

ft2in <- function(ft){
 inch <- ft * 12
 return(inch)
}

ft2in is the name of the function
The input argument is named ft (make an expressive name)
Inches are computed by multiplying ft by 12 and storing it in inch
The output of the function is the value of the inch variable

To run this:

5

ft2in(12, convert_to='cm') [1] "365.76 cm"

Defining functions
What if we want more than one input?

ft2in <- function(ft, convert_to){
 # ft = input (feet)
 # convert_to = unit to convert to ('in','m','cm')
 if(convert_to == 'in'){
 output <- ft * 12
 }
 if(convert_to == 'm'){
 output <- ft * 0.3048
 }
 if(convert_to == 'cm'){
 output <- ft * 30.48
 }
 return(paste(output, convert_to))
}

6

Quick reminder about conditions
Some comparison operators for filtering

Operator Meaning

== Equals

!= Not equals

> / < Greater / less than

>= / <= Greater or equal / Less or equal

! Not

%in% In a set

Combining comparisons

Operator Meaning

& And

| Or

7

8

ft2in(12, convert_to='cm') [1] "365.76 cm"

Defining functions

 conversion <- case_when(
 convert_to == 'in' ~ 12,
 convert_to =='m' ~ 0.3048,
 convert_to == 'cm' ~ 30.48,
 TRUE ~ 1 # otherwise
)

ft2in <- function(ft, convert_to){
 # ft = input (feet)
 # convert_to = unit to convert to ('in','m','cm')

 output = ft * conversion
 return(paste(output, convert_to))
}

9

The concept of local vs global variables

x <- 10
print(x)

[1] 10

f <- function(x){
 x <- 5
 print(x)
}

f(x)

[1] 5

print(x)

[1] 10

The x inside the function is local to the function and is independent of the x in the global space that has the value 10..

10

LoopsLoops

1111

for-loops

12

for(i in 1:10){
 print(i)
}

Here i is a dummy variable. It's actual name doesn't
matter, just its action

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10

for-loops
The for-loop is a construct to repeat the same operation over a list of values.

Basic syntax:

for(<variable> in <list>){
 <code>
 ...
 <more code>
}

Example:

13

for-loops
Example:

 print(glue::glue('The mean of {n} is {mean(iris[,n])}'))

The mean of Sepal.Length is 5.84333333333333
The mean of Sepal.Width is 3.05733333333333
The mean of Petal.Length is 3.758
The mean of Petal.Width is 1.19933333333333

You don't need the <list> in the for-loop definition to be integers. In this case it is a list of strings.

Note that vectors are also considered lists for this purpose.

for(n in names(iris)){
 if(is.numeric(iris[,n])){

 }
}

The glue package allows you to run templated text strings interspersed with the results of R objects

14

purrr: functional programming and mappingpurrr: functional programming and mapping

1515

map(iris1, mean)

$Sepal.Length
[1] 5.843333

$Sepal.Width
[1] 3.057333

$Petal.Length
[1] 3.758

$Petal.Width
[1] 1.199333

map takes a list and outputs a list.

Recall, a data.frame is a list of columns, so map takes
each column and applies the function mean to it, and
prints the output

If you're familiar with lapply, map works almost exactly
the same way

purrr
The purrr package provides ways to efficiently run functions over lists. These functions
are typically more efficient than
for-loops.

The function purrr::map has syntax

map(<list/vector>, <function/formula>, ...)

Example:

iris1 <- select(iris, where(is.numeric))

16

map_dbl(iris1, mean) There are several helper functions like map_dbl, map_int,
map_chr, and others that
will reduce the output into a
vector of particular type (more here)

purrr
Example (cont.):

You can clean the output up a bit.

map can also be used as part of pipes, leveraging the fact that data.frames are lists of columns.

iris %>%
 select(where(is.numeric)) %>%
 map_dbl(mean)

Sepal.Length Sepal.Width Petal.Length Petal.Width
 5.843333 3.057333 3.758000 1.199333

Question: Why does map_dbl only have the argument mean?

Sepal.Length Sepal.Width Petal.Length Petal.Width
 5.843333 3.057333 3.758000 1.199333

17

https://purrr.tidyverse.org/reference/map.html

purrr
There are several extensions of map

map2 and derivatives map2_dbl, etc, iterate over two lists to compute the outcome of a function of two variables
pmap and derivatives iterate over p lists to compute the outcome of a p-dimensional function
imap and derivatives iterates over a list and its index/names to compute the outcome of a function that takes the
values and index/names as inputs

18

purrr
The function part of these functions can be entered in a couple of ways:

1. If you have a formal function f with the appropriate number of arguments, you can just add f.
map_dbl(iris1, mean)

2. You can also define a function "on-the-fly" using a formula interface.
map_dbl(iris1, ~mean(.x))
if you have multiple arguments, they are denoted as .x, .y, .z, .w, etc.

The second method is often referred to as anonymous functions or lambda functions in computer science since they aren't given a
name

19

