
Practical R: IntroductionPractical R: Introduction
Abhijit DasguptaAbhijit Dasgupta

BIOF 339BIOF 339

11

BIOF339

2

A scripting language

Provide instructions to
the computer

in a structured manner

to do statistical
analysis

Determining frequencies of breast cancer subtypes

type_frequencies <-
 breast_cancer %>%
 mutate(luminalA = ifelse(ER == '+' & PR == '+' & HER2 == '-', 1, 0),
 luminalB = ifelse(ER == '+' & PR == '-' & HER2 == '+', 1, 0),
 her2 = ifelse(ER == '-' & PR == '-' & HER2 == '+', 1, 0),
 basal = ifelse(ER == '-' & PR == '-' & HER2 == '-', 1, 0)) %>%
 mutate(type = case_when(
 luminalA == 1 ~ "Luminal A",
 luminalB == 1 ~ "Luminal B",
 her2 == 1 ~ "HER2",
 basal == 1 ~ "Basal",
 TRUE ~ NA)) %>%
 count(type)

What does R look like?
BIOF339

3

Start with a data set
 breast_cancer %>%

What does R look like?
BIOF339

Determining frequencies of breast cancer subtypes

type_frequencies <-

 mutate(luminalA = ifelse(ER == '+' & PR == '+' & HER2 == '-', 1, 0),
 luminalB = ifelse(ER == '+' & PR == '-' & HER2 == '+', 1, 0),
 her2 = ifelse(ER == '-' & PR == '-' & HER2 == '+', 1, 0),
 basal = ifelse(ER == '-' & PR == '-' & HER2 == '-', 1, 0)) %>%
 mutate(type = case_when(
 luminalA == 1 ~ "Luminal A",
 luminalB == 1 ~ "Luminal B",
 her2 == 1 ~ "HER2",
 basal == 1 ~ "Basal",
 TRUE ~ NA)) %>%
 count(type)

4

Start with a data set

Create new variables from
old variables

What does R look like?

 mutate(luminalA = ifelse(ER ==
 luminalB = ifelse(ER ==
 her2 = ifelse(ER == '-' &
 basal = ifelse(ER == '-'

BIOF339

Determining frequencies of breas

type_frequencies <-
 breast_cancer %>%

 mutate(type = case_when(
 luminalA == 1 ~ "Luminal A",
 luminalB == 1 ~ "Luminal B",
 her2 == 1 ~ "HER2",
 basal == 1 ~ "Basal",
 TRUE ~ NA)) %>%
 count(type)

5

Start with a data set

Create new variables from
old variables

Deal with missing values

 TRUE ~ NA)) %>%

What does R look like?
BIOF339

Determining frequencies of breast cancer subtypes

type_frequencies <-
 breast_cancer %>%
 mutate(luminalA = ifelse(ER == '+' & PR == '+' & HER2 == '-', 1, 0),
 luminalB = ifelse(ER == '+' & PR == '-' & HER2 == '+', 1, 0),
 her2 = ifelse(ER == '-' & PR == '-' & HER2 == '+', 1, 0),
 basal = ifelse(ER == '-' & PR == '-' & HER2 == '-', 1, 0)) %>%
 mutate(type = case_when(
 luminalA == 1 ~ "Luminal A",
 luminalB == 1 ~ "Luminal B",
 her2 == 1 ~ "HER2",
 basal == 1 ~ "Basal",

 count(type)

6

Start with a data set

Create new variables from
old variables

Deal with missing values

Find the frequencies

 count(type)

What does R look like?
BIOF339

Determining frequencies of breast cancer subtypes

type_frequencies <-
 breast_cancer %>%
 mutate(luminalA = ifelse(ER == '+' & PR == '+' & HER2 == '-', 1, 0),
 luminalB = ifelse(ER == '+' & PR == '-' & HER2 == '+', 1, 0),
 her2 = ifelse(ER == '-' & PR == '-' & HER2 == '+', 1, 0),
 basal = ifelse(ER == '-' & PR == '-' & HER2 == '-', 1, 0)) %>%
 mutate(type = case_when(
 luminalA == 1 ~ "Luminal A",
 luminalB == 1 ~ "Luminal B",
 her2 == 1 ~ "HER2",
 basal == 1 ~ "Basal",
 TRUE ~ NA)) %>%

7

Start with a data set

Create new variables from
old variables

Deal with missing values

Find the frequencies

Comment on what you're
doing

Determining frequencies of breast cancer subtypes

What does R look like?

This is an example of a pipeline in R. We'll develop different aspects of this
progressively throughout the semester

BIOF339

type_frequencies <-
 breast_cancer %>%
 mutate(luminalA = ifelse(ER == '+' & PR == '+' & HER2 == '-', 1, 0),
 luminalB = ifelse(ER == '+' & PR == '-' & HER2 == '+', 1, 0),
 her2 = ifelse(ER == '-' & PR == '-' & HER2 == '+', 1, 0),
 basal = ifelse(ER == '-' & PR == '-' & HER2 == '-', 1, 0)) %>%
 mutate(type = case_when(
 luminalA == 1 ~ "Luminal A",
 luminalB == 1 ~ "Luminal B",
 her2 == 1 ~ "HER2",
 basal == 1 ~ "Basal",
 TRUE ~ NA)) %>%
 count(type)

8

Pros:

1. Have to think

2. Reproducible (custom) work�ows

3. Much less error-prone

4. Much lower costs to repeat analyses, or as you
learn more

5. Easily leverage work of smarter developers

6. Easier to work with larger datasets (more than
size of screen)

Cons:

1. Have to type

2. Have to know the language

3. Higher initial startup cost

4. Have to think

Why use a scripting language for
analysis?

BIOF339

9

Pros:

1. Have to think

2. Reproducible (custom) work�ows

3. Much less error-prone

4. Much lower costs to repeat analyses, or as you
learn more

5. Easily leverage work of smarter developers

6. Easier to work with larger datasets (more than
size of screen)

You're giving instructions to a fast but stupid
machine

This machine will do exactly what you tell it

The machine is capable of amazing things

Can't just menu-mine and try things that seem
to be what you want

With great power comes great responsibility

But also great bene�ts

Why use a scripting language for
analysis?

BIOF339

10

Pros:

1. Have to think

2. Reproducible (custom) work�ows

3. Much less error-prone

4. Much lower costs to repeat analyses, or as you
learn more

5. Easily leverage work of smarter developers

6. Easier to work with larger datasets (more than
size of screen)

If your code is not right, it won't run

Can be frustrating

But if it runs you're much more con�dent

If you screw up in Excel

almost impossible to recover

You have much more control over what you're
doing

Why use a scripting language for
analysis?

BIOF339

11

Pros:

1. Have to think

2. Reproducible (custom) work�ows

3. Much less error-prone

4. Much lower costs to repeat analyses, or as you
learn more

5. Easily leverage work of smarter developers

6. Easier to work with larger datasets (more than
size of screen)

Can use modules or packages developed by
others

tidyverse, Seurat, ggplot2

Can "steal" code from others (provided license
allows)

Why use a scripting language for
analysis?

BIOF339

12

Pros:

1. Have to think

2. Reproducible (custom) work�ows

3. Much less error-prone

4. Much lower costs to repeat analyses, or as you
learn more

5. Easily leverage work of smarter developers

6. Easier to work with larger datasets (more than
size of screen)

Good luck working with

GWAS data

fMRI data

Stocks and bonds data

Sports data

Many more ...

in a uni�ed environment

Learn once, use everywhere

Why use a scripting language for
analysis?

BIOF339

13

Why use ?

Specializes in statistics and data visualization

Flexible

If you can do it How you can do it

Large ecosystem

Over 16,000 packages, 1500+ dedicated to bioinformatics

Can read from most sources of data

Generic and specialized analyses

Fantastic community

Twitter, StackOver�ow, blogosphere, conferences, online books

BIOF339

14

Why use ?
R is a very high-quality product that is accepted and used widely in government agencies, corporations and
universities worldwide

Standard data analytic software in bioinformatics, behavioral health and many aspects of quantitative
�nance

Increasingly used in pharma, economics, political science and engineering

R is open-source, in that anyone can see the actual code and validate the computations directly

BIOF339

15

Why use ?

R has a well-deserved reputation for being a great data visualization tool, with users being able to create
complex, customizable graphs with relative ease

As a scripting language, it allows the same work�ows to be coded and re-used.

You can set up work�ows to validate data, in terms of data quality and missingness, which avoids visual
inspection which can be time-consuming and mistake-prone.

R can handle large datasets, and can work with multiple datasets at the same time

BIOF339

16

Why use ?
Specialized packages available for many domains

Bioinformatics

Econometrics

Maps and spatial analytics

Text mining and Natural Language Processing

The CRAN Task Views provide curated lists of packages based on different domains

The Bioconductor Project is THE source for bioinformatics packages in R. It is the gold standard for many
bioinformatic work�ows

BIOF339

17

https://cran.r-project.org/web/views/
https://www.bioconductor.org/

Things is not (in this class)

The 18th letter of the English alphabet

A magic incantation that will produce an analysis

Just something the cool kids are doing

Point-and-click, automatic, WYSIWYG (What you see is what you get)

So it's not Excel, SPSS, Prism, GraphPad

It's much more!!!

BIOF339

18

Excel is omnipresent, so it becomes the default
data medium

It is great for many things, including quick-and-dirty
analyses

It can be error-prone

It needs to be backed up

It has size limitations

Takes a lot of effort to do complex analyses

No way to reproduce analyses without macros

No way to document what you are doing

Excel has some nasty default behavior

Guess what the MAR1 gene gets recorded
as?

Very hard to recover from errors

Shift of one error (off by one row or
column)

Google Duke Potti or Reinhart Rogoff
Herndon

A note on Excel
BIOF339

19

