Student Performance Data based on Background

Akshay Thaper

My dataset

For my presentation, I downloaded Student Performance data from Kaggle (https://www.kaggle.com/spscientist/students-performance-in-exams#StudentsPerformance.csv). The inspiration for this dataset was to understand the influence of a student's background on his/her academic performance.

install packages outside of base R

```
library(tidyverse)
                                                 ----- tidyverse 1.2.1 --
## -- Attaching packages -----
## v ggplot2 3.1.0
                 v purrr 0.2.5
                 v dplyr 0.7.8
## v tibble 1.4.2
## v tidyr 0.8.2
                 v stringr 1.3.1
## v readr 1.3.0
                 v forcats 0.3.0
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                masks stats::lag()
library(ggplot2)
```

Importing Data

I downloaded the file "Students Performance.csv" and imported it into RS
tudio.

```
stuPer <- read.csv("StudentsPerformance.csv")</pre>
```

Its dimensions are 1000x8, with continuous variables such as test scores in reading, writing, and math, and categorical variables like race, gender, and socioeconomic characteristics. Here is a preview of the dataset:

head(stuPer)

##		gender	race.ethnicity p	parental.leve	el.of.education	lunch
##	1	${\tt female}$	group B	bac	chelor's degree	standard
##	2	female	group C		some college	e standard
##	3	female	group B	n	naster's degree	standard
##	4	male	group A	asso	ciate's degree	free/reduced
##	5	male	group C		some college	e standard
##	6	${\tt female}$	group B	asso	ciate's degree	standard
##		test.pr	reparation.course	e math.score	reading.score	writing.score
##	1		none	e 72	72	74
##	2		completed	i 69	90	88
##	3		none	e 90	95	93
##	4		none	e 47	57	44
##	5		none	e 76	78	75
##	6		none	e 71	83	78

Data Manipulation

Luckily, the dataset was already pretty cleaned up and the variables had reasonable names.

I manipulated the data by combining the three scores for reading, writing, and math into one composite score as a measure of student performance.

I also removed the columns for individual math, reading, and writing scores.

Once I had the composite score, I created a new column for the percentile rank of each student.

```
stuPer <- stuPer %>% mutate(composite.score = math.score + reading.score + writing.score) %>%
select(-math.score, -reading.score, -writing.score) %>%
mutate(percentile.rank = percent_rank(composite.score)*100)
```

Next, I looked at the summary statistics:

```
## gender race.ethnicity parental.level.of.education
## female:518 group A: 89 associate's degree:222
```

```
female:518
                group A: 89
                             associate's degree:222
                group B:190
##
   male :482
                              bachelor's degree :118
##
                group C:319
                              high school
                              master's degree
##
                group D:262
                                                : 59
##
                group E:140
                              some college
                                                :226
##
                              some high school :179
##
            lunch
                      test.preparation.course composite.score
## free/reduced:355
                      completed:358
                                            Min. : 27.0
##
                                             1st Qu.:175.0
   standard
              :645
                     none
                              :642
##
                                             Median :205.0
##
                                             Mean :203.3
##
                                             3rd Qu.:233.0
##
                                             Max. :300.0
##
   percentile.rank
##
   Min. : 0.00
## 1st Qu.:24.72
## Median :48.95
```

Median :48.95 ## Mean :49.68 ## 3rd Qu.:74.67

```
summary(stuPer$composite.score)
```

:99.80

Max.

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 27.0 175.0 205.0 203.3 233.0 300.0
```

In looking at the data, I suspected that there may be a few outliers. I used a formula to find the lower and upper bounds of the composite scores and excluded any outliers.

```
#IQR is the inter-quartile range, 233 represents the 3rd Quartile and 175 represents the 1st Quartile
IQR <- 233 - 175
lowBound <- 175 - 1.5*IQR
highBound <- 233 + 1.5*IQR

cat("Composite scores below", lowBound, "and above", highBound, "will be excluded.
    There are no outliers on the high end because the max is 300.")</pre>
```

```
## Composite scores below 88 and above 320 will be excluded.
```

^{##} There are no outliers on the high end because the max is 300.

I created a new dataset without the outliers.

```
stuPerOut <-stuPer
stuPerOut <- stuPerOut %>% filter(stuPer$composite.score > lowBound)
summary(stuPerOut$composite.score)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 89.0 175.0 206.0 204.3 234.0 300.0
```

Graphing

I wanted to see if the scores were normally distributed, so I graphed a density plot of the composite scores after taking care of the outliers.

shapiro.test(stuPerOut\$composite.score)

```
##
## Shapiro-Wilk normality test
##
## data: stuPerOut$composite.score
## W = 0.99547, p-value = 0.004912
```

The p-value of the Shapiro-Wilk test indicates that we should reject the null hypothesis and that this is not a normally distributed dataset. I will use non-parametric statistics to analyze this data.

Statistical Analysis

Statistical analysis of one continuous variable (composite test score) and one categorical variable (completion of prep course):

Question of interest - Does the completion of the prep course correlate with higher composite scores?

I first graphed the scores of students who completed the prep course and those who did not take a prep course:

ggplot(stuPerOut, aes(x=test.preparation.course, y = composite.score)) + geom_boxplot() + theme_light()

I used a non-parametric test (Wilcox) to test the null hypothesis that completion of the prep course and composite scores are independent of each other.

```
wilcox.test(composite.score ~ test.preparation.course, data = stuPerOut)
##
```

```
## Wilcoxon rank sum test with continuity correction
##
## data: composite.score by test.preparation.course
## W = 147810, p-value = 3.56e-15
## alternative hypothesis: true location shift is not equal to 0
```

Since the p-value was below .05, this indicates that we should reject the null hypothesis and that there is a correlation between completing the prep course and the composite scores.