R-project

Neha Gupta 12/17/2018

Background

- Eukaryotic translation initiation involves a dozen of known translation initiation factors
- Ded1- ATP-dependent RNA helicase- plays an important role in translation initiation
- Dbp1- a paralog of Ded1, role in translation initiation is unclear
- Ribosome footprint profiling and mRNA-seq analysesdetermined the changes in translation efficiency (TE) in ∆dbp1, ded1^{ts}, and ∆dbp1ded1^{ts}
- Goal: Select few candidate mRNAs to test in purified in vitro reconstituted translation initiation assay

Setting up directory and attaching packages

> setwd ("/Users/guptan8/Desktop/R_project")

> library(tidyverse)

— Attaching packages

- ✓ ggplot2 3.0.0 ✓ purrr 0.2.5
- ✓ tibble 1.4.2 ✓ dplyr 0.7.6
- ✓ tidyr 0.8.1 ✓ stringr 1.3.1
- ✓ readr 1.1.1 ✓ forcats 0.3.0

Reading a .csv file and understanding the data

> ded <- read_csv("ded.csv")</pre>

> dim(ded)

[1] 523 35

> str(ded)

Classes 'tbl_df', 'tbl' and 'data.frame': 523 obs. of 35 variables:

\$ X1	: chr "Q0140" "YAL002W" "YAL009W" "YAL016W"	
\$ X2	: chr "Q0140" "YAL002W" "YAL009W" "YAL016W"	
\$ Pelechano 2013	: chr "0" "95" "25" "81"	Several columns are character
\$ Nagalakshmi	: chr "0" "0" "26" "0"	instead of numeric type
\$ Xu 2009	: chr "#N/A" "110" "33" "81"	and have "NA"
\$ Lawless	: chr "#N/A" "415" "#N/A" "97"	
\$ X7	: chr "#N/A" "YAL002W" "YAL009W" "YAL016W"	
\$ Techange_Dbp1	: chr "#N/A" "-0.3312571" "-0.467667" "0.00634	95"
\$ Techange_Ded1	ts : chr "#N/A" "-0.75009" "-1.17144" "-0.77361"	
\$ Techange_dd	: chr "#N/A" "-1.67665" "-2.31827" "-1.03332"	

....more

Some column headings are not very useful

> names(ded)

[1] "X1"	"X2"	"Pelechano 2013"
[4] "Nagalakshmi"	"Xu 2009"	"Lawless"
[7] "X7"	"Techange_Dbp1"	"Techange_Ded1ts"
[10] "Techange_dd"	"Techange_co	onditionalDed1" "teChange_conditionalDbp1"
[13] "dbp1"	"ded1"	"X15"
[16] "biolmrna"	"bioIFT"	"treatded1dbp1"
[19] "biolFT.treatded1	dbp1" "logFDREff	ect" "logFDRTrl"
[22] "mrnawtts"	"FTwtts"	"mrnaded1dbp1"
[25] "FTded1dbp1"	"mrnaChange	e" "FTChange"
[28] "tewtts"	"teded1dbp1"	"teChange"
[31] "Gene"	"Description"	"X33"
[34] "X34"	"X35"	

Changing column names

- > names(ded)[1] <- "Genes"</pre>
- > names(ded)[8] <-"TE_Dbp1"</pre>
- > names(ded)[9] <-"TE_Ded1"</pre>
- > names(ded)[10] <-"TE_Dbp1Ded1"</pre>
- > names(ded)

[1] "Genes"	"X2"	"Pelechano 2013"
[4] "Nagalakshmi"	"Xu 2009"	"Lawless"
[7] "X7"	"TE_Dbp1"	"TE_Ded1"
[10] "TE_Dbp1Ded1"	"Techange_co	onditionalDed1" "teChange_conditionalDbp1"
[13] "dbp1"	"ded1"	"X15"
[16] "biolmrna"	"bioIFT"	"treatded1dbp1"
[19] "bioIFT.treatded10	dbp1" "logFDREffe	ct" "logFDRTrl"
[22] "mrnawtts"	"FTwtts"	"mrnaded1dbp1"
[25] "FTded1dbp1"	"mrnaChange"	"FTChange"
[28] "tewtts"	"teded1dbp1"	"teChange"
[31] "Gene"	"Description"	"X33"
[34] "X34"	"X35"	

Cleaning data

- > ded2 <- ded [,1:10] %>% #selecting first 10 columns
- + select(-X2,-X7) %>% # deleting columns 2 and 7
- + mutate(Genes = as.factor(Genes)) %>%
- + mutate_if(is.character, as.numeric) %>% # changing columns 2 to 8 to numeric
- + mutate(Genes = as.character(Genes)) %>%
- + filter(!is.na(TE_Dbp1)) # removing NAs
- > head(ded2)
- # A tibble: 6 x 8

Genes `Pelechano 2013` Nagalakshmi `Xu 2009` Lawless TE_Dbp1 TE_Ded1 TE_Dbp1Ded1

<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl> <dbl> <dbl></dbl></dbl></dbl>	<dbl></dbl>
1 YAL002W	95	0	110	415 -0.331 -0.750	-1.68
2 YAL009W	25	26	33	NA -0.468 -1.17	-2.32
3 YAL016W	81	0	81	97 0.00635 -0.774	-1.03
4 YAL017W	0	368	363	367 -0.0783 -0.832	-1.71
5 YAL022C	16	34	36	NA 0.228 -1.01	-1.67
6 YAL029C	252	48	244	NA 0.135 -0.594	-1.10

Cleaner data with desirable data type

> str(ded2)

Classes 'tbl_df', 'tbl' and 'data.frame': 522 obs. of 8 variables:

- \$ Genes : chr "YAL002W" "YAL009W" "YAL016W" "YAL017W" ...
- \$ Pelechano 2013: num 95 25 81 0 16 252 321 97 145 0 ...
- \$ Nagalakshmi : num 0 26 0 368 34 48 319 227 151 0 ...
- \$ Xu 2009 : num 110 33 81 363 36 244 330 88 161 NA ...
- \$ Lawless : num 415 NA 97 367 NA NA NA 89 NA NA ...
- \$ TE_Dbp1 : num -0.33126 -0.46767 0.00635 -0.07831 0.22817 ...
- \$ TE_Ded1 : num -0.75 -1.171 -0.774 -0.832 -1.006 ...
- \$ TE_Dbp1Ded1 : num -1.68 -2.32 -1.03 -1.71 -1.67 ...

Checking for 'NA'

> apply(ded2, 2, function(x) sum(is.na(x)))

Columns starting with 'TE' and Genes have 0 NAs. It's good enough for the subsequent data analysis.

TE_Dbp1Ded1 and TE_Dbp1 have very weak (if any) correlation

> pdf(file = "A.pdf", width=5, height=5)

> ggplot(ded2, aes(x = TE_Dbp1Ded1, y = TE_Dbp1)) + geom_point() + scale_x_reverse() +
geom_smooth(method='lm')

> dev.off()

- > cor.test(ded2\$TE_Dbp1, ded2\$TE_Dbp1Ded1, method = "spearman")
- > cor.test(ded2\$TE_Dbp1, ded2\$TE_Dbp1Ded1, method = "pearson")

rho = 0.1066642

cor = 0.1588643

TE_Dbp1Ded1 and TE_Ded1 are correlated

> pdf(file = "ScatterB.pdf", width=5, height=5)

> ggplot(ded2, aes(x = TE_Dbp1Ded1, y = TE_Ded1)) + geom_point() + scale_x_reverse() + geom_smooth(method='lm')

> dev.off()

- > cor.test(ded2\$TE_Ded1, ded2\$TE_Dbp1Ded1, method = "spearman")
- > cor.test(ded2\$TE_Ded1, ded2\$TE_Dbp1Ded1, method = "pearson")

rho = 0.7618936 (Warning message:

Cannot compute exact p-value with ties)

cor = 0.7868674

TE_Ded1 and TE_Dbp1 are not correlated

> pdf(file = "scatterC.pdf", width=5, height=5)

> ggplot(ded2, aes(x = TE_Dbp1, y = TE_Ded1)) + geom_point() + scale_x_reverse() + geom_smooth(method='lm')

> dev.off()

> cor.test(ded2\$TE_Ded1, ded2\$TE_Dbp1, method = "spearman")

> cor.test(ded2\$TE_Ded1, ded2\$TE_Dbp1, method = "pearson")

rho = -0.07614446 (Warning message:

Cannot compute exact p-value with ties)

cor = -0.07204412

Boxplot may be a better way to visualize

```
> ded3 <- ded2 %>%
+ select(Genes, TE_Dbp1, TE_Ded1, TE_Dbp1Ded1) %>%
+ gather(variable, value, -Genes)
>head(ded3)
> pdf(file = "Boxplot.pdf", width=5, height=5)
> ggplot(ded3, aes(x = variable, y = value, color = variable)) +
geom_boxplot(notch = TRUE) + scale_x_discrete
(limits=c("TE_Dbp1", "TE_Ded1", "TE_Dbp1Ded1"))
> dev.off()
```

A tibble: 6 x 3

Genes variable value

<chr> <chr> <dbl>

- 1 YAL002W TE_Dbp1 -0.331
- 2 YAL009W TE_Dbp1 -0.468
- 3 YAL016W TE_Dbp1 0.00635
- 4 YAL017W TE_Dbp1 -0.0783
- 5 YAL022C TE_Dbp1 0.228

6 YAL029C TE_Dbp1 0.135

Does 5'-UTR length affect TE_Dbp1Ded1?

- > ded4 <- ded2 %>%
- + select(Genes, Nagalakshmi,TE_Dbp1, TE_Ded1, TE_Dbp1Ded1) %>%
- + filter(!Nagalakshmi == 0) %>% #NAs became 0
- + rename(Leader_length = Nagalakshmi)
- > head(ded4)

A tibble: 6 x 5

Genes Lea	ader_length TE_Dbp1 TE_	Ded1 TE_Dbp1Ded1
<chr></chr>	<dbl> <dbl> <dbl></dbl></dbl></dbl>	<dbl></dbl>
1 YAL009W	26 -0.468 -1.17	-2.32
2 YAL017W	368 -0.0783 -0.832	-1.71
3 YAL022C	34 0.228 -1.01	-1.67
4 YAL029C	48 0.135 -0.594	-1.10
5 YAL040C	319 -1.39 -0.719	-1.84
6 YAL061W	227 -0.280 -0.284	-1.07

Does 5'-UTR length affect TE_Dbp1Ded1? Maybe

> pdf(file = "UTR.pdf", width=5, height=5)

> ggplot(ded4, aes(x = TE_Dbp1Ded1, y = Leader_length)) + geom_point() + scale_x_reverse() + geom_smooth(method='lm')

> dev.off()

- > cor.test(ded4\$Leader_length, ded4\$TE_Dbp1Ded1, method = "spearman")
- > cor.test(ded4\$Leader_length, ded4\$TE_Dbp1Ded1, method = "pearson")

rho = -0.2098855 Warning message:

Cannot compute exact p-value with ties

cor = -0.2043999

Final list of candidate mRNAs

- > ded5 <- ded4 %>%
- + filter(Leader_length < 300) %>% #Want length <300nt
- + filter(TE_Dbp1 > -0.25) %>% # Weak correlation
- + filter(TE_Ded1 > -0.25) #Strong correlation
- > ded5

A tibble: 9 x 5

Genes Leader_length TE_Dbp1 TE_Ded1 TE_Dbp1Ded1

<chr></chr>	<dbl> <dbl> <dbl> <</dbl></dbl></dbl>	dbl>
1 YDR466W	97 -0.144 -0.179	-1.19
2 YGR108W	116 0.425 0.0894	-1.28
3 YGR167W	52 0.0219 -0.178	-1.19
4 YKL218C	127 0.486 -0.161	-1.06
5 YKR080W	151 -0.222 -0.105	-1.07
6 YLR071C	32 0.0307 -0.249	-1.06
7 YLR455W	216 -0.155 0.0264	-1.32
8 YOR129C	79 -0.121 0.0678	-1.04
9 YOR191W	88 0.0510 -0.162	-1.02