Exercises
- Install the “ALL” Bioconductor package.
BiocManager::install(c("ALL"))
- Use library(ALL) and data(ALL) to load the ALL ExpresssionSet.
library(ALL)
## Loading required package: Biobase
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind,
## colMeans, colnames, colSums, dirname, do.call, duplicated,
## eval, evalq, Filter, Find, get, grep, grepl, intersect,
## is.unsorted, lapply, lengths, Map, mapply, match, mget, order,
## paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind,
## Reduce, rowMeans, rownames, rowSums, sapply, setdiff, sort,
## table, tapply, union, unique, unsplit, which, which.max,
## which.min
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
data(ALL)
- Use pData to examine the phenotype data.
str(pData(ALL))
## 'data.frame': 128 obs. of 21 variables:
## $ cod : chr "1005" "1010" "3002" "4006" ...
## $ diagnosis : chr "5/21/1997" "3/29/2000" "6/24/1998" "7/17/1997" ...
## $ sex : Factor w/ 2 levels "F","M": 2 2 1 2 2 2 1 2 2 2 ...
## $ age : int 53 19 52 38 57 17 18 16 15 40 ...
## $ BT : Factor w/ 10 levels "B","B1","B2",..: 3 3 5 2 3 2 2 2 3 3 ...
## $ remission : Factor w/ 2 levels "CR","REF": 1 1 1 1 1 1 1 1 1 1 ...
## $ CR : chr "CR" "CR" "CR" "CR" ...
## $ date.cr : chr "8/6/1997" "6/27/2000" "8/17/1998" "9/8/1997" ...
## $ t(4;11) : logi FALSE FALSE NA TRUE FALSE FALSE ...
## $ t(9;22) : logi TRUE FALSE NA FALSE FALSE FALSE ...
## $ cyto.normal : logi FALSE FALSE NA FALSE FALSE FALSE ...
## $ citog : chr "t(9;22)" "simple alt." NA "t(4;11)" ...
## $ mol.biol : Factor w/ 6 levels "ALL1/AF4","BCR/ABL",..: 2 4 2 1 4 4 4 4 4 2 ...
## $ fusion protein: Factor w/ 3 levels "p190","p190/p210",..: 3 NA 1 NA NA NA NA NA NA 1 ...
## $ mdr : Factor w/ 2 levels "NEG","POS": 1 2 1 1 1 1 2 1 1 1 ...
## $ kinet : Factor w/ 2 levels "dyploid","hyperd.": 1 1 1 1 1 2 2 1 1 NA ...
## $ ccr : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ relapse : logi FALSE TRUE TRUE TRUE TRUE TRUE ...
## $ transplant : logi TRUE FALSE FALSE FALSE FALSE FALSE ...
## $ f.u : chr "BMT / DEATH IN CR" "REL" "REL" "REL" ...
## $ date last seen: chr NA "8/28/2000" "10/15/1999" "1/23/1998" ...
- Load and experiment with the Heatplus library to make heatmaps.
# find the 128 most variant genes
top128 <- order(apply(exprs(ALL),1,var, na.rm=TRUE), decreasing = TRUE)[1:128]
ALL.top <- ALL[top128,]
library(Heatplus)
myMap <- regHeatmap(exprs(ALL.top))
plot(myMap)
