
Prac%cal	R:	Lecture	1	

Introduc%ons	

•  Abhijit	Dasgupta	(NIH/NIAMS)	
–  PhD	in	Biosta%s%cs	
–  15+	years	using	R	
–  Runs	the	Sta%s%cal	Programming	DC	meetup	
(formerly	the	R	Users	Group	meetup)	

–  Board	member	of	Data	Community	DC	
•  Gene	Buehler	(NIH/NCATS)	
–  PhD	in	Computer	Science	
–  20	years	in	bioinforma%cs	
–  R	user	for	past	ten	years	
	

Class	Structure	

•  Weekly	Lectures	
•  Suggested	ac%vi%es	and	online	resources	
•  Semester	Project	

Semester	Project	

•  Use	R	to	import,	manipulate,	analyze	and	
visualize	a	dataset.	

•  Ideally	it	will	be	your	data,	or	your	lab’s	data,	or	
at	least	data	relevant	to	your	field	

•  Short	presenta%ons	will	be	given	on	the	last	day	
of	class	for	each	project	

•  Grade	will	be	based	on	your	project	presenta%on	
(although	if	you	can’t	show	up	we	can	grade	
based	on	your	presenta%on	slides).	

What	this	class	isn’t	

•  A	programming	class	
•  A	bioinforma%cs	class	
•  A	workshop	

Very	Brief	Course	Outline	
–  Basics	of	using	R	(variables,	func%ons,	arguments)	
–  GeZng	Help	(R	help	system,	Google,	command	history)	
–  Impor%ng	data	into	R	(from	files,	from	URLs,	and	
preloaded	data)	

–  Packages:		finding	them,	loading	them,	reading	their	
documenta%on	

–  Visualizing	Data:	Graphs,	graphs	and	more	graphs	
–  Sta%s%cal	Analysis:	How	and	why	
– Manipula%ng	data:	selec%ng,	filtering,	merging	and	more.	
–  Science	specific	analysis	and	visualiza%on	(eg.	Heatmaps	
and	dendograms	for	gene	expression	data)	

There’s	more	than	one	way	

•  Lots	of	ways	to	run	R:	command	line,	GUI,	
RStudio.	

•  Frequently	more	than	one	package	to	do	what	
you	want	

•  More	than	one	sta%s%cal	test	you	can	use	on	a	
given	type	of	data	

Homework:	Installing	R	and	RStudio	

	
•  h^ps://cran.rstudio.com	
•  h^ps://www.rstudio.com/products/rstudio/
download/	

•  Both	are	available	for	Windows,	MacOSX,	and	
Linux.	

R	Start-up	Message	
R version 3.2.0 (2015-04-16) -- "Full of Ingredients"!
Copyright (C) 2015 The R Foundation for Statistical Computing!
Platform: x86_64-apple-darwin13.4.0 (64-bit)!
!
R is free software and comes with ABSOLUTELY NO WARRANTY.!
You are welcome to redistribute it under certain conditions.!
Type 'license()' or 'licence()' for distribution details.!
!
 Natural language support but running in an English locale!
!
R is a collaborative project with many contributors.!
Type 'contributors()' for more information and!
'citation()' on how to cite R or R packages in publications.!
!
Type 'demo()' for some demos, 'help()' for on-line help, or!
'help.start()' for an HTML browser interface to help.!
Type 'q()' to quit R.!
!
[Workspace loaded from ~/.RData]!
!
>!

Unpacking	the	Startup	

R version 3.2.0 (2015-04-16) -- "Full of Ingredients"!
Copyright (C) 2015 The R Foundation for Statistical Computing!
Platform: x86_64-apple-darwin13.4.0 (64-bit)!
	

Version	Number	 Oaen	silly	version	name	

Opera%ng	system	this	version	is	made	for	 32	or	62	bit	

Unpacking	the	Startup	

R is free software and comes with ABSOLUTELY NO WARRANTY.!
You are welcome to redistribute it under certain conditions.!
Type 'license()' or 'licence()' for distribution details.!

“Don’t	sue	us”	

Terms	under	which	you	can	distribute	the	soaware	

Unpacking	the	Startup	

Natural language support but running in an English locale!
!
R is a collaborative project with many contributors.!
Type 'contributors()' for more information and!
'citation()' on how to cite R or R packages in publications.!

R	has	support	for	different	local	conven%ons.		For	
example,	you	can	get	it	to	use	“,”	instead	of	“.”	for	
decimal	nota%on	

R	is	made	by	real	people	who	deserve	credit	(cita%ons)	for	their	
work	as	much	as	you	do.		Please	give	it	to	them.	

Unpacking	the	Startup	

Type 'demo()' for some demos, 'help()' for on-line help, or!
'help.start()' for an HTML browser interface to help.!
Type 'q()' to quit R.!
!
[Workspace loaded from ~/.RData]!

Some	R	packages	have	“demos”	or	their	capabili%es.		
For	example,	demo(graphics)	will	show	you	some	of	
the	cool	graphs	R	can	make.	

R’s	help	func%on.		You	will	
probably	use	this	a	lot.	

How	you	quit	R	from	the	console.	

A	“workspace”	is	where	the	stuff	you	do	in	R	gets	stored	when	you	quit.	

Start of RMarkdown Presentation

Expressions
Typing “1+1” on the console will cause R to evaluate the expression
and tell us the results

> 1+1

[1] 2

The “[1]” before the answer is R’s line numbering scheme for
reading long sets of numbers.
For example, if we were to type “letters” which is R’s built in
variable with the letters of the alphabet:

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"

[13] "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x"

[25] "y" "z"

Standard Math Stu�

Addition and subtraction symbols are what you would expect (+
and -). Multiplication and division are * and / respectively.

> 5-3

[1] 2

> 5*3

[1] 15

Order of Operations

Order of operations is as you might remember from math class.
Multiplication and division before addition and subtraction. You can
force the order of operations to be what you want by enclosing
things you want done first in parentheses.

> 5 * 3 + 2

[1] 17

> 5 * (3 + 2)

[1] 25

Functions

Functions are how things get done in R. They take “arguments” as
their input and output something useful (hopefully). R has a lot of
built in functions. You can download and install packages to get
access to more functions. You can easily write your own functions,
but that won’t be the focus of this course.

> sqrt(25)

[1] 5

Arguments, optional and required

log()

Error: argument “x” is missing, with no default

> log(100)

[1] 4.60517

> log(100, base=10)

[1] 2

Variable assignment

> x <- 2

> x * 5

[1] 10

Variable Naming

If you name your variables things like “x” and “y”, chances are
excellent you will soon forget what they mean. R variable names can
be long, so make them as long as you need to explain what they are.

> plate_map.csv <- read.csv("plate_map.csv")

> plate_map.csv.colnames <- colnames(plate_map.csv)

Basic “Atomic” Data types
For the purposes of this class, R has three base “types” of data
(there are a few more we won’t concern ourselves with, like for
complex numbers).

> class(12)

[1] "numeric"

> class("Susan")

[1] "character"

> class(TRUE)

[1] "logical"

Vectors

A vector is an ordered list of values in R, all of the same type.

> childAges <- c(8,10)

> childNames <- c("Bronwyn","Margot")

> childLikesMacAndCheese <- c(FALSE, TRUE)

> c(TRUE, "Bronwyn", 8)

[1] "TRUE" "Bronwyn" "8"

> c(8,12,35,"no data",16,82)

[1] "8" "12" "35" "no data" "16"

[6] "82"

Describing Data
Data can be continuous or discrete. Continuous data takes on
values in a range. Discrete data can take on only a limmited
number of values. Its important to think about the meaning of the
data, so that the way in which R stores it does not confuse the
meaning of the data.

> myChromosomes <- c(1,3,8)

> myChromosomes

[1] 1 3 8

> factor(c(1,3,8), levels=1:22)

[1] 1 3 8

22 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 22

Ordinal Data

An ordinal variable is one that has a natural ordering to it. Whereas
there is no natural ordering to eye colors (a nominal variable), there
would be a natural ordering to grades.

> classGrades <- factor(c("B","D","A"),

+ levels=c("F","D","C","B","A"),

+ ordered=TRUE)

> classGrades

[1] B D A

Levels: F < D < C < B < A

Telling R that our data is ordinal will help it do the right statistical
tests and build models correctly.

